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Preface

Algebraic K-theory is the branch of algebra dealing with linear algebra
(especially in the limiting case of large matrices) over a general ring R
instead of over a field. It associates to any ring R a sequence of abelian
groups Ki(R). The first two of these, Ko and K1, are easy to describe in
concrete terms; the others are rather mysterious. For instance, a finitely
generated projective R-module defines an element of Ko( R), and an invert-
ible matrix over R has a ìdeterminantî in Kl(R).  The entire sequence of
groups Ki(R) behaves something like a homology theory for rings.

Algebraic K-theory plays an important role in many areas, especially
number theory, algebraic topology, and algebraic geometry. For instance,
the class group of a number field is essentially Ko(R),  where R is the ring
of integers, and ìWhitehead torsionî in topology is essentially an element
of KI(ZT),  where 7r is the fundamental group of the space being stud-
ied. K-theory in algebraic geometry is basic to Grothendieckís approach
to the Riemann-Roth problem. Some formulas in operator theory, involv-
ing determinants and determinant pairings, are best understood in terms
of algebraic K-theory. There is also substantial evidence that the higher
K-groups of fields and of rings of integers are related to special values of
L-functions and encode deep arithmetic information.

This book is based on a one-semester course I gave at the University
of Maryland in the fall of 1990. Most of those attending were second- or
third-year graduate students interested in algebra or topology, though there
were also a number of analysis students and faculty colleagues from other
areas. I tried to make the course (and this book) fairly self-contained, and
to assume as a prerequisite only the standard one-year graduate algebra
course, based on a text such as [Hungerford], [Jacobson], or [Lang], and the
standard introductory graduate course on algebraic and geometric topol-
ogy, covering the fundamental group, homology, the notions of simplicial
and CW-complex, and the definition and basic properties of manifolds. As
taught at Maryland, the graduate algebra course includes the most basic
definitions and concepts of category theory; a student who hasnít yet seen
these ideas could consult any of the above algebra texts or an introduc-
tion to category theory such as [Mac Lane]. Since many graduate algebra
courses do not include much in the way of algebraic number theory, I have



vi Preface

included many topics such as the basic theory of Dedekind rings and the
Dirichlet unit theorem,. which may be familiar to some readers but not
to all. Iíve tried in this book to presuppose as little topology as possible
beyond a typical introductory course, and to develop what is needed as
I go along, but to give the reader a flavor of some of the important ap-
plications of the subject. A reader with almost no topology background
should still be able to follow most of the book except for parts of Sections
1.6, 1.7, 2.4, 4.4, and 6.3, and most of Chapter 5 (though I would hope
this book might encourage him or her to take a more systematic course
in topology). A problem one always has in writing a book such as this
is to decide what to do about spectral sequences. They are usually not
mentioned in first-year graduate courses, and yet they are indispensable
for serious work in homological algebra and K-theory. To avoid having
to give an introduction to spectral sequences which might scare off many
readers, I have avoided using spectral sequences directly anywhere in the
text. On the other hand, I have made indirect reference to them in many
places, so that the reader who has heard of them will often see why they
are relevant to the subject and how they could be used to simplify some of
the proofs.

For the most part, this book tends to follow the notes of the original
course, with a few additions here and there. The major exceptions are
that Chapters 3 and 5 have been greatly expanded, and Chapter 6 on
cyclic homology has been added even though there was no time for it in
the original course. Cyclic homology is a homology theory for rings which
may be viewed as the ìlinearized versionî of algebraic K-theory, and itís
becoming increasingly clear that it is both a useful computational tool and
a subject of independent interest with its own applications.

Each chapter of this book is divided into sections, and I have used a
single numbering system for all theorems, lemmas, exercises, definitions,
and formulas, to make them easier to locate. Thus a reference such as
1.4.6 means the 6th numbered item in Section 4 of Chapter 1, whether
that item is a theorem, a corollary, an exercise, or a displayed formula.
The exercises are an integral part of the book, and I have tried to put at
least one interesting exercise at the end of every section. The reader should
not be discouraged if he finds some of the exercises too difficult, since the
exercises vary from the routine to the very challenging.

I have used a number of more-or-less standard notations without special
reference, but the reader who is puzzled by them will be able to find most
of them listed in the Notational Index in the back of the book.

Why This Book?

The reader might logically ask how this book differs from its ìcompeti-
tion.î [Bass] remains an important reference, but it is too comprehensive
to use as a text for an elementary course, and also it predates the defini-
tion of K2, let alone of higher K-theory or of cyclic homology. My original
course was based on the notes by Milnor [Milnor], which are highly recom-
mended. However, I found that [Milnor] is hard to use as a textbook, for
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the following three reasons:

(1) Milnor writes for a working mathematician, and sometimes leaves
out details that graduate students might not be able to provide for
themselves.

(2) There are no exercises, at least in the formal sense.
(3) The subject has changed quite a bit since Milnorís book was writ-

ten.

For the working algebraist already familiar with the contents of [Milnor]
who wants to learn about Quillen  K-theory and its applications in alge-
braic geometry, [Srinivas] is an excellent text, but it would have been far
beyond the reach of my audience. The notes of Berrick  [Berrick]  give a
more elementary introduction to Quillen  K-theory than [Srinivas], but are
rather sketchy and do not say much about applications, and thus again are
not too suitable for a graduate text. [LluisP] is very good for an up-to-date
survey, but it is, as the title says, an overview rather than a textbook. For
cyclic homology, the recent book by Loday [LodayCH]  is excellent, but to
be most useful it requires that the reader already know something about
K-theory. Also, I do not believe that there is any book available that dis-
cusses the applications of algebraic K-theory in functional analysis (which
are discussed here in 2.2.1G2.2.11, 4.4.19-4.4.24, 4.4.30, 6.3.8-6.3.17, and
6.3.296.3.30). Thus for all these reasons it seemed to me that another
book on K-theory is needed. I hope this book helps at least in part to
fulfill that need.

Acknowledgments

I would like to thank Mike Boyle for making his notes of my lectures
(often much more readable and complete than my own) available to me, and
to thank all the others who attended my lectures for their useful feedback.
I would also like to thank the National Science Foundation for its support
under grants # DMS 90-02642 and # DMS 92-25063, which contributed
substantially to the research that went into the writing of this book, both
directly and indirectly. Finally, I would like to thank several anonymous
referees and numerous colleagues, including in particular Andrew Ranicki
and Shmuel Weinberger, for useful suggestions on how to improve my early
drafts.



Contents

Preface

Chapter 1. K0 of Rings
1. Defining Ko
2. KO from idempotents
3. .K,-,  of PIDs and local rings
4. Ko of Dedekind domains
5. Relative K~-J and excision
6. An application: Swanís Theorem and topological

K- theory
7. Another application: Euler characteristics and the Wall

finiteness obstruction

Chapter 2. K1 of Rings
1. Defining K1
2. Kl of division rings and local rings
3. KI of PIDs  and Dedekind domains
4. Whitehead groups and Whitehead torsion
5. Relative K1 and the exact sequence

Chapter 3. KO and K1 of Categories, Negative
K-Theory

1. Ko and Kl of categories, GO and G1 of rings
2. The Grothendieck and Bass-Heller-Swan  Theorems
3. Negative K-theory

Chapter 4. Milnorís Kz
1. Universal central extensions and HZ

Universal central extensions
Homology of groups

2. The Steinberg group
3. Milnorís K2
4. Applications of KZ

Computing certain relative KI groups
K2 of fields and number theory
Almost commuting operators
Pseudo-isotopy

V

1
1
7

11
16
27

32

41

59
59
62
74
83
92

108
108
132
153

162
162
163
168
187
199
218
218
221
237
240



x Contents

Chapter 5. The +-Construction and Quillen
K-Theory

1. An introduction to classifying spaces
2. Quillenís +-construction and its basic properties
3. A survey of higher K-theory

Products
K-theory of fields and of rings of integers
The Q-construction and results proved with it
Applications

Chapter 6. Cyclic homology and its relation to
K-Theory

1. Basics of cyclic homology
Hochschild homology
Cyclic homology
Connections with ìnon-commutative de Rham theory”

2. The Chern character
The classical Chern character
The Chern character on Ko
The Chern character on higher K-theory

3. Some applications
Non-vanishing of class groups and Whitehead groups
Idempotents in C*-algebras
Group rings and assembly maps

References 369
Books and Monographs on Related Areas of Algebra,

Analysis, Number Theory, and Topology
Books and Monographs on Algebraic K-Theory
Specialized References

Notational Index

Subject Index

369
371
372
377
303

245
245
265
279
279
281
289
295

302
302
302
306
325
331
332
335
340
350
350
355
362



1
KO of Rings

1. Defining KO

K-theory as an independent discipline is a fairly new subject, only about
35 years old. (See [Bak] for a brief history, including an explanation of the
choice of the letter K to stand for the German word Klasse.)  However,
special cases of K-groups occur in almost all areas of mathematics, and
particular examples of what we now call Ko were among the earliest stud-
ied examples of abelian  groups. More sophisticated examples of the idea of
the definition of Ko underlie the Euler-Poincar6  characteristic in topology
and the Riemann-Roth theorem in algebraic geometry. (The latter, which
motivated Grothendieckís first work on K-theory, will be briefly described
below in 53.1.) The Euler characteristic of a space X is the alternating sum
of the Betti numbers; in other words, the alternating sum of the dimen-
sions of certain vector spaces or free R-modules I&(X; R) (the homology
groups with coefficients in a ring R). Similarly, when expressed in modern
language, the Riemann-Roth theorem gives a formula for the difference of
the dimensions of two vector spaces (cohomology spaces) attached to an
algebraic line bundle over a non-singular projective curve. Thus both in-
volve a formal difference of two free modules (over a ring R which can
be taken to be Cc). The group Ko(R)  makes it possible to define a similar
formal difference of two finitely generated projective modules over any
ring R.

We begin by recalling the definition and a few basic properties of pro-
jective modules. Unless we say otherwise, we shall assume all rings
have a unit, we shall require all ring homomorphisms to be unit-
preserving, and we shall always use the word module to mean
ìleft module ”.

1.1.1. Definition. Let R be a ring. A projective module over R
means an R-module P with the property that any surjective  R-module
homomorphism Q : M + P has a right inverse p : P -+ M. An equivalent
way of phrasing this is that whenever one has a diagram of R-modules and
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R-module maps
P

1 ëp

*M - N

with M 2 N surjective, one can fill this in to a commutative diagram

*M - N.

Indeed, given the diagram-completion property and a surjective R-mod-
ule homomorphism (Y : M ---f  P, one can take N = P, cp = idp, and
+ = cq and the resulting 8 : P ---t  M is a right inverse for (Y, i.e., satisfies
a:08=idp.

In the other direction, suppose any surjective R-module homomorphism
CX: M + P has a right inverse p : P + M, and suppose one is given a
diagram of R-modules and R-module maps

P

with M -% N surjective. Replacing M 2 N by M @ P s N 63 P
and cp : P -+ N by (cp,  idp) : P --+ N @ P, we may suppose ëp  is one-to-one,
and then replacing N by the image of cp and M by $-ë(imcp),  we may
assume itís an isomorphism. Then take (Y = ëp-l  o $ and the right inverse
p : P + M enables us to complete the diagram.

When cx : M -+ P is surjective and p : P + M is a right inverse for (Y,
then p = p o (Y is an idempotent endomorphism of M, since

(P 0 42 = (P O a) O (P O a)
=po(cyop)ocr

=/30idpocx=Pocx,

and then 2 H ((Y(Z),  (l-p)(z)) gives an isomorphism M E P@(l-p)(M).

Using this observation, we can now prove the fundamental characteriza-
tion of projective modules.

1.1.2. Theorem. Let R be a ring. An R-module is projective if and only
if it is isomorphic to a direct summand in a free R-module. It is finitely
generated and projective if and only if it is isomorphic to a direct summand
in R” for some n.

Proof. If P is projective, choose a free module F and a surjective R-mod-
ule homomorphism (Y : F -+ P by taking F to be the free module on some
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generating set for P, and (Y to be the obvious map sending a generator of F
to the corresponding generator of P. We are using the universal property of
a free module: To define an R-module homomorphism out of a free module,
it is necessary and sufficient to specify where the generators should go. If
P is finitely generated, then F will be isomorphic to R” for some n. The
observation above then shows P is isomorphic to a direct summand in a
free R-module, which we can take to be R” for some n if P is finitely
generated.

For the converse, observe first that free modules F are projective, since
given a surjective R-module homomorphism CY : M + F with F free, one
can for each generator pi of F choose some yi E M with a(yi) = zi, and
then one can define a right inverse to (Y by using the universal property
of a free module to define an R-module homomorphism p : F + M with
~(zc,) = yi. Next, suppose F = P @ Q and F is a free module. Given a
surjective R-module homomorphism a : M -+ P, Q! @ idQ  is a surjective
R-module homomorphism (M @ Q) + (P @ Q) = F, so it has a right
inverse. Now restrict this right inverse to P and project into M to get a
right inverse for CL Finally, if F = R” with standard generators ~1, . . . , x,,
then P is generated by p(zi), where p is the identity on P and 0 on Q.
Thus a direct summand in R” is finitely generated and projective. 0

Weíre now almost ready to define KO of a ring R. First of all, note that
the isomorphism classes of finitely generated projective modules over R
form an abelian  semigroup Proj R, in fact a monoid, with @ as the addition
operation and with the O-module as the identity element. To see that this
makes sense, there are a few easy things to check. First of all, Proj R is a
set! (This wouldnít be true if we didnít take isomorphism classes, but in
fact we have a very concrete model for Proj R as the set of split submodules
of the Rî,  n E N, divided out by the equivalence relation of isomorphism.)
Secondly, direct sum is well defined on isomorphism classes, i.e., if P E P’
and Q E Qí, then P@Q 2 Pí@Qí.  And thirdly, direct sum is commutative
(P@QgQ@P)  dan associative ((P CD Q) @ V Z P @ (Q CB V)) once we
pass to isomorphism classes.

In general, though, Proj R is not a group, and may not even have the
cancellation property

a+b=c+b*a=c.

Itís therefore convenient to force it into being a group, even though this
may result in the loss of some information. The idea of how to do this is
very simple and depends on the following, which is just a generalization of
the way Z is constructed from the additive semigroup of positive integers, or
Q” is constructed from the multiplicative semigroup of non-zero integers,
or a ring is ìlocalizedî by the introduction of formal inverses for certain
elements.

1.1.3. Theorem. Let S be a commutative semigroup (not necessarily
having a unit). There is an abelian  group G (called the Grothendieck
group or group completion of S), together with a semigroup homo-
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morphism ëp  : S + G, such that for any group H and homomorphism
$I : S -+ H, there is a unique homomorphism 6 : G + H with 11, = 8 o cp.

Uniqueness holds in the following strong sense: if cp’ : S --t G’ is any
other pair with the same property, then there is an isomorphism (I! : G + G’
with ëp’ = a: o ëp.

Proof. We will outline two constructions. The simplest is to define  G
to be the set of equivalence classes of pairs (2, y) with 5, y E S, where
(IC,  y) N (u, U) if and only if there is some t E S such that

(1.1.4) z+v+t=u+y+t ins.

Denote by [(CC,  y)] the equivalence class of (2, y). Then addition is defined
by the rule

[(xc,  Y)l + w, Yí)l  = [(x + 2í7  Y + YíN  *

(It is easy to see that this is consistent with the equivalence relation, and
that the associative rule holds.)

Note that for any x and y in S,

[(XT x)1 = KY, Y)l

since x + y = y + 2. Let 0 be this distinguished element [(z, x)]. This is an
identity element for G, i.e., G is a monoid,  since for any x, y, and t in S,

(x + 6 Y + 4 - (xc, Y>.

Also, G is a group since

[(XT Y)] + [(Y,  x>l = Kx + Y1 2 + Y)l = 0.

We define cp : S --+ G by

and it is easy to see that this is a homomorphism. Note that the image of
ëp  generates G as a group, since

1(x, Y)l = (P(x) - cp(Y>

in G. Given a group H and homomorphism $ : S + H, the homomorphism
0 : G --+ H with $J = 8 o cp is defined by

0 ([(x7 Y)l)  = +,(x:)  - q(Y).

Alternatively, one may define G to be the free abelian  group on gen-
erators [xl, x E S, divided out by the relations that if x + y = z in S,
then the elements [x] + [y] = [z] in G. Note that [(x, y)] in the previous
construction corresponds to [x] - [y] in this second construction. The map
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cp is 2 H [z], and of course any homomorphism from S into a group H
must factor through G by construction.

To prove the uniqueness, suppose ëp’ : S + Gí has the same universal
property. First of all, ví(S) must generate Gí, since otherwise, if G” is the
subgroup generated by the image of cpí,  then there are two homomorphisms
0 : Gí -+ G’ @ Gí/G”  with

(9í7  0) = 0 0 4,

namely, 13 = (id, 0) and 0 = (id, Q), Q the quotient map. By the universal
properties for G and Gí, there must be maps a : G + Gí with ëp’ = (Y o cp
and ,S : Gí + G with ëp  = /3 o cpí.  But then Q: o p = id on the image of cpí,
hence on all of Gí, so (Y is a left inverse to p. Similarly p o (Y = id on the
image of cp;  hence o is also a right inverse to S, as required. Cl

Remarks. The assignment S -+ G = G(S) is in fact a functor from the
category of abelian  semigroups to the category of abelian  groups, since if
y : S + S’ is a homomorphism of semigroups, it induces a commutative
diagram

S A S’

ëp 1 9’ 1
G(S) - G(W,

the bottom is uniquely determined by the universalwhere the arrow at
property of G(S).

In fancier language, Theorem 1.1.3 just asserts that the forgetful functor
F from the category of abelian  groups to the category of abelian  semigroups
has a left adjoint,  since

Homsemisroups (S, FH) g HomGroups(G,  H).

This could also have been deduced from the adjoint  functor theorem (see
[Freyd] or [Mac Lane]).

It is convenient that we do not have to assume that cancellation (z+z =
y + z =+-  x = y) holds in S. Indeed, the map ëp  : S -+ G is injective  if
and only if cancellation holds in S. One of the reasons for introducing
Grothendieck groups is that semigroups without cancellation are usually
very hard to handle; yet in many cases their Grothendieck groups are fairly
tractable.

1.1.5. Definition. Let R be a ring (with unit). Then Ko(R)  is the
Grothendieck group (in the sense of Theorem 1.1.3) of the semigroup Proj R
of isomorphism classes of finitely generated projective modules over R.

Note that Ko is a functor; in other words, if ëp : R + Rí is an R-
module homomorphism, there is an induced homomorphism Ko(cp)  = cp*  :
Ko(R) + Ko(Rí)  satisfying the usual conditions id, = id, ((POT/J),  = (P+o$J,.
To see this, observe first that cp induces a homomorphism Proj R 4 Proj R’
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via [P] H [Rí @+, P], for P a finitely generated projective module over R.
As required, R’ @p P is finitely generated and projective over Rí,  since if
P@Q 2 Rî,  then

(Rí cg~~ P) $ (R' c&, Q) 2 R' EQ, (P @Q)  z (R’  &, Rn) = Ríì.

And of course, the tensor product commutes with direct sums so we get a
homomorphism. Fíunctoriality of Ke now follows from functoriality of the
Grothendieck group construction.

1.1.6. Example. If R is a field, or more generally a division ring (i.e.,
a skew-field), then any finitely generated R-module is a finitely generated
R-vector space and so has a basis and a well-defined dimension. This
dimension is the only isomorphism invariant of the module, so we see
that Proj R E N, the additive monoid of natural numbers. Since the
group completion of N is Z, &(R) Z Z, with the isomorphism induced
by the dimension isomorphism Proj R -t N. The inclusion of a field F
into an extension field Fí induces the identity map from Z to itself, since
dimF,(F’ @F P) = dimF  P for any F-vector space P.

This same example also shows why we only use finitely generated
projective modules in defining Ke. If R is a field, the same arguments
show that the monoid  of isomorphism classes of countably generated
modules is isomorphic to the extended natural numbers N U {oo), with the
usual rule of transfinite arithmetic, n + 00 = 00 for any n. This is no longer
a monoid  with cancellation; in fact, any two elements become isomorphic
after adding 00 to each one. Thus the Grothendieck group of this monoid  is
trivial. A similar phenomenon happens with infinitely generated modules
over an arbitrary ring; see Exercise 1.1.8.

1.1.7. Exercise. Let S be the abelian  monoid  with elements a,, m, where
nfN,and

(

m=Oifn=Oor  1 ,

mEZifn=2,

m E Z/2 if n 2 3.

The semigroup operation is given by the formula

a,, m + ad, d = h+d,  m+mí,

where m + m’ is to be computed in Z if n + n’ 5 2 and in Z/2 if n + n’ _> 3.
(If for instance n = 2 and ní > 1, then m is to be interpreted mod 2.)
We shall see in $1.6 that S is isomorphic to Proj R with R = CR(S2),  the
continuous real-valued functions on the 2-sphere. Compute G(S) and the
map cp : S --)  G(S). Determine the image of S in G, and show that while
cp-ë(0)  = 0, ëp  is not injective.
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1.1.8. Exercise (the ìEilenberg swindleî). Show that for any ring
R, the Grothendieck group of the semigroup of isomorphism classes of
countably generated projective R-modules vanishes.

1.1.9. Exercise. Recall that if a ring R is commutative, then every left
R-module is automatically a right R-module as well, so that the tensor
product of two left R-modules makes sense.

(1) Show that the tensor product of two finitely generated projective
modules is again finitely generated and projective.

(2) Show that the tensor product makes KC,(R)  into a commutative
ring with unit. (The c ass1 of the free R-module R is the unit
element .)

2. KO from idempotents
There is another approach to Ke which is a little more concrete and there-
fore often convenient. If P is a finitely generated projective R-module, we
may assume (replacing P by an isomorphic module) that P @ Q = R” for
some n, and we can consider the R-module homomorphism p from R” to
itself which is the identity on P and 0 on Q. Clearly p is idempotent, i.e.,
p2 = p. Since any R-module homomorphism R” -+ R” is determined by
the n coordinates of the images of each of the standard basis vectors, it
corresponds to multiplication on the right (since R is acting on the left)
by an n x n matrix. In other words, P is given by an idempotent n x n
matrix p which determines P up to isomorphism.

On the other hand, different idempotent matrices can give rise to the
same isomorphism class of projective modules. (When R is a field, the only
invariant of a projective module P is its dimension, which corresponds to
the rank of the matrix p.., When the characteristic of the field is zero, the
rank of an idempotent matrix is just its trace.) So to compute Ko(R)  from
idempotent matrices, we need to describe the equivalence relation on the
idempotent matrices that corresponds to isomorphism of the corresponding
modules.

1.2.1. Lemma. If p and q are idempotent matrices over a ring R (of
possibly different sizes), the corresponding finitely generated projective R-
modules are isomorphic if and only if it is possible to enlarge the sizes of p
and q (by adding zeroes in the lower right-hand corner) so that they have
the same size N x N and are conjugate under the group of invertible N x N
matrices over R, GL(N, R).

Proof. The condition is sufficient since if u E GL(N, R) and upu-i  = q,
then right multiplication by u induces an isomorphism from RNq to RNp.
So the problem is to prove necessity of the condition. Suppose p is n x n
and q is m x m, and Rîp  % Rmq. We can extend an isomorphism CY :
Rnp + Rmq to an R-module homomorphism R” + R” by taking (Y = 0
on the complementary module Rî(  1 - p), and by viewing the image Rmq
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as embedded in Rî. Similarly extend oy-’ to an R-module homomorphism
,0 : R” + R” which is 0 on Rî(  1 - q). Once weíve done this, cr is given
by right multiplication by an n x m matrix a, and p is given by right
multiplication by an m x n matrix b. We also have the relations ab = p,
ba=q,a=pa=aq,b=qb=bp.  ThetrickisnowtotakeN=n+mand
to observe that

( lip l:q)2=(; ;)

(with usual block matrix notation) and that

( lip laq)(l;  :)(lbp 1:q)

=
( lip I:,)(: ;)=(: :).

Thus ë-’
(

a
b l-q >

is invertible and conjugates p@O to O@q.  The latter

is of course conjugate to q @ 0 by a permutation matrix. 0

Now we can give a simple description of Proj R.

1.2.2. Definition. Let R be a ring. Denote by M(n, R) the collection of
n x n matrices over R and by GL(n, R) the group of n x n matrices over

R. We embed M(n, R) in M(n + 1, R) by a I+
( )

z i (this is a non-

unital  ring homomorphism) and GL(n, R) in GL(n + 1, R) by the group
a 0homomorphism a  I+ o 1 .

( )
Denote by M(R) and GL(R) the infinite

unions of the the M(n, R), resp. GL(n, R). Note that M(R) is a ring
without unit and GL(R) is a group. It is important to remember that
each matrix in M(R) has finite size. Let Idem be the set of idempotent
matrices in M(R), and note that GL(R) acts on Idem by conjugation.

Now we can restate Lemma 1.2.1.

1.2.3. Theorem. For any ring R, Proj R may be identified with the set
of conjugation orbits of GL(R) on Idem(  The semigroup operation is

induced by (p, q) I-+
( >
: i . (Oneonlyh as commutativity and associa-

tivity after passage to conjugacy classes.) Ko  (R) is the Grothendieck group
of this semigroup.

Using this fact we can now show that Ke is invariant under passage from
R to M,(R) and commutes with direct limits. We will also construct an
example of a ring for which Ko vanishes.

1.2.4. Theorem (ìMorita  invarianceî). For any ring R and any pos-

itive integer n, there is a natural isomorphism Ko(R) 2 Ko(M,(R)).

Proof. Via the usual identification of Mk(Mn(R)) with Mkn(R),

Idem(M,(R))  = Idem and GL(M,(R)) = GL(R).
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The result therefore follows immediately from Theorem 1.2.3. 0

Next we show that Ko is a continuous functor, i.e., that it commutes
with (direct) limits. A direct system or directed system in a category
is a collection (Aa)aE~ of objects, indexed by a partially ordered set I with
the property that if (Y, 0 E I, there is some y E I with y 2 CX, y > p.
In addition, one supposes there are morphisms (~~0  : A, + Ag defined
whenever a 5 /3, with the compatibility condition

ëPBr  o ëPM  = (Pa-i, o<PIr*
A (direct) limit for such a system is an object A = l%A,, together with
morphisms @a : A, -+ A satisfying the compatibility condition $ti =
$0 o (~~0 whenever (Y 5 p, with the universal property that compatible
morphisms

L : Aa --+ B, 5c.t = 63 O (PC@7
must factor as co& for some E : A --+ B. For example, if G is the increasing
union of an increasing sequence

of subgroups, it is their categorical direct limit in the category of groups
(with respect to the obvious inclusion maps), and similarly if one replaces
groups by rings or other algebraic objects.

1.2.5. Theorem. Let (Ra)crE~,  (0,, : R, -+ RP)~<~  be a direct system of
rings and let R = 15 R, be the direct limit of the system. Then Ko(R)  g

15 K,,(Ra).

Proof. Applying Ko, we obtain a directed system of abelian  groups
(Ko(R,)k,  (k/3,* : Ko(Ra) -+ Ko(Rp)),<p  and thus a limit group
15 Ko(R,). By the universal property of the direct limit, there is a natu-
ral map 1% Ko(R,) + Ko(R).  We want to show this is an isomorphism.
To prove surjectivity, first observe that each p E Idem is a matrix with
finitely many entries, each one of which must come from some R,. If
we choose y greater than or equal to all of these indices (II, then p is the
image of a matrix in Idem( hence the class b] of p in KC,(R)  is in
the image of the natural map Ko(~)  + Ko(R),  hence in the image of
l&Ko(Ra)  -+ Ko(R).  Since the b], p E Idem(  generate Ko(R), this
proves surjectivity.

Now we prove injectivity.  Suppose z E liI_r! Ko(R,)  and z H 0 in Ko(R).
We may suppose z comes from KO ( Rcr  ) for some Q and is of the form b] - [q],
p, q E Idem(  The fact that z H 0 means that the images of p and of
CJ in Idem are stably isomorphic in the sense of (1.1.4). Without loss
of generality, we may first add on zeroes in the lower right corners of p
and q, then replace p and q by p CD 1, and q @ l,, so that when mapped
into Idem(  p and q represent the same element of Proj R, hence are
conjugate under GL(R). (This is by Theorem 1.2.3.) Once again, the
matrix that does the conjugating must come from some GL(R+), y > (Y,
and then [p]  - [q] t-t 0 in Ko(R+), hence x = 0 in the direct limit. 0



.”  -_  -ì...60

1.2.6. Example: a ring with vanishing I&. We shall also use Theorem
1.2.3 to construct a ring R for which all projective modules are stably
isomorphic to one another (in the sense of (1.1.4)),  hence for which I&(R)  =
0. Let k be a field and let V be an infinite-dimensional vector space over
k. Let R = Endk(V).  If p, q E Idem(  then p and q are idempotents
someMn(R).  Considerp@l@Oandq@l@Oin

M,+2(R)  z Endk(kî+2)  @k R % Endk(Ff2)  @k Endk(V)

E Endk(Vî+ë)  % Endk(V)  Z R,

in

since Vnf2 and V have the same dimension over k when V is infinite-
dimensional. Now 0 5 rankp 5 dimk(Vî)  = ndim V = dim V, and simi-
larly 0 5 rank q < dim V, whereas rank 1~ = dim V. So

and rank(p @ 1 @ 0) = dim V. Similarly, rank(q @ 1 @ 0) = dim V and

Since p @ 1 @ 0 and q ~33 1 @ 0 are idempotent endomorphisms of a vector
space and have the same rank and corank,  they are conjugate. Hence
p@l@OZq@l@Oandhence~]=[q]inKe(R).

1.2.7. Exercise: construction of a simple ring for which Ke is not
finitely generated. Let k be a (commutative) field and define a map

of rings & : Mp(k) -+ Msn+l  (k) by a H
a 0

( >
o a . Show that the in-

duced map on Ke is multiplication by 2 (when we use the isomorphisms
Ks(M2n(k))  g Ko(k)  Z Z, &(Msn+l(k))  g Ko(k) S Z defined by Theo
rem 1.2.4). Deduce that if A = li&Mp (k), &), then

Note that since matrix rings over fields are simple, A is a limit of simple
rings and so is simple. (One needs to show that if x E A, then the 2-sided
ideal generated by x is everything, or that there exist elements aj, bj in A
with 1 = Cj aj xbj . However, x must lie in (the canonical image of) one
of the approximating rings Msn, and one can construct the elements there
by simplicity of the matrix ring.)

1.2.8. Exercise: behavior of KO under Cartesian products. Let
R = RI x Rs, a Cartesian product of rings. By using the obvious decompo
sitions  Idem = Idem x Idem and GL(R)  = GL(R1)  x GL(R2),
show that Proj R E Proj RI x Proj Rs and hence that &(R) %’ Ko(R1) $
K,J (Rs). Generalize to arbitrary finite products.
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1.2.9. Exercise: construction of rings with quite general count-
able torsion-free Ko.

(1) Use Theorem 1.2.4 and Exercise 1.2.8 to show that if k is a field and
R is a finite product of r matrix rings over k, then Ko(R) E 17,ë.

(2) Show that a homomorphism Z’ + Z” given by right multiplica-
tion by a matrix A E M,,+(Z) can be implemented by a unital
homomorphism of rings as in (1) if and only if all the entries of
the matrix A are non-negative and no row or column of A is iden-
tically 0.

(3) Generalizing Exercise 1.2.7, show that any countable torsion-free
abelian  group can be realized as Ko(R) of a ring. (Write the group
as an inductive limit of a sequence of finitely generated free abelian
groups, with maps given by matrices as in (2).)

3. KO of PIDs and local rings
Weíre now ready to begin computing Ko for more rings of practical inter-
est. Recall that a PID (principal ideal domain) is a commutative integral
domain (ring without zero-divisors) in which every ideal can be generated
by a single element. Standard examples are Z and a polynomial ring in
one variable over a field. More general polynomial rings will be discussed
in Chapter 3.

1.3.1. Theorem. If R is a PID, every finitely generated projective module
over R is isomorphic to R” for some unique n, called the rank of the
module. The rank induces an isomorphism  Ko(R) + Z.

Proof. Needless to say, this follows from the general structure theorem
for finitely generated modules over a PID, which we presume most, readers
have seen in an algebra course. However, since thereís an easier proof that
will motivate what weíll do for Dedekind rings, we give it here. Let A4 be
a finitely generated projective module over R. We may assume that A4 is
embedded in some Rî. We argue by induction on n that M is isomorphic
to R” for some k 2 n. If n = 0, there is nothing to prove. So assume
the result for smaller values of n and let r : R” -+ R be projection on the
last coordinate. Note that r maps M onto an R-submodule of R, i.e., an
ideal. If r(M)  = 0, then we may view M as embedded in kerr ” Rn-’
and use the inductive hypothesis. Otherwise, T(M) is a non-zero ideal and
so is isomorphic to R as an R-module (by the PID property). So x(M)
is projective and hence M splits as kern[M  @ R (recall the remarks in
1.1.1). Since we may view ker ~1 M as embedded in Rnpl, we may apply
the inductive hypothesis to conclude that itís isomorphic to Rkí,  k’ 5 n- 1.
So M E R” with k = k’ + 1 < (n - 1) + 1 = n.

Finally, we need to know that, the rank k of M is well defined. This
follows from the fact that we may also characterize it as the dimension of
F @R M over F, where F is the field of fractions of R. The calculation of
Ko is as in 1.1.6. 0
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Remark. The proof actually showed a little more, namely that every
submodule M of a finitely generated free R-module is free. We never
explicitly used the fact that M is projective.

For any ring R with unit, there is a unique ring homomorphism L : Z -+ R
sending 1 to the identity element of R. By Theorem 1.3.1, &(Z) ì= Z, so
we obtain a map L* : Z --) I&(R). The image of this map is the subgroup
of Ks(R) generated by the finitely generated free R-modules. In general,
the map L* need not be injective;  in Example 1.2.6, it is even 0.

1.3.2. Definition. The reduced &-group  of R is the quotient

&(R> = Ko(R)/L,(Z).

Note that we have seen that &(R) vanishes if R is a division ring or a
PID. In general, l&,(R) measures the non-obvious part of Ko(R). We will
see in the next section that it recaptures a famous classical invariant of
Dedekind rings.

Next we compute Ke for local rings (which are not necessarily commu-
tative). We begin with a review of some useful general ring theory.

1.3.3. Definition. A ring R (not necessarily commutative) is local if
the non-invertible elements of R constitute a proper 2-sided ideal M of R.
Examples of commutative local rings include k[[t]],  the ring of formal power
series over a field k, and Zc,), the ring of rational numbers of the form %,
where p is a prime, b # 0, and p { b. For an example of a non-commutative
local ring, let S be any non-commutative unital  k-algebra, where k is a
field, and let

R = {a, + alt + a2t2  + . . . E S[[t]]  : ao E k} .

Since any power series in R with a0 # 0 is invertible (by the usual algo-
rithm for inverting power series), and since the elements in R with ae = 0
constitute an ideal, R is a local ring.

1.3.4. Proposition. For a ring R (not necessarily commutative), the
following are equivalent:

(a) R has a unique maximal left ideal, and a unique maximal right
ideal, and these coincide.

(b) R is local.

Proof (b) + (a). If R is local with ideal M of non-invertible elements,
no element of R \ M can lie in a proper left ideal or proper right ideal,
hence M is both the unique maximal left ideal and the unique maximal
right ideal.

Now letís show (a) + (b). Assume (a) and let z E R. If z does not
have a left inverse, then Rx is a proper left ideal, which by Zornís Lemma
lies in a maximal left ideal, which by (a) is unique. Similarly, if x does not
have a right inverse, then x lies in the unique maximal right ideal. Thus
all non-invertible elements lie a proper 2-sided ideal M. 0
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1.3.5. Corollary. In a local ring, an element with a one-sided inverse is
invertible.

Remark. Note that replacing (a) by the condition that R has a unique
maximal 2-sided  ideal gives a very different class of rings in the non-
commutative case. A simple ring R (one with no 2-sided ideals other than
0 and R) need not be local; a matrix ring over a field is a counterexample,
since a sum of singular matrices need not be singular.

1.3.6. Definition. If R is any ring, the radical (or Jacobson radical)
of R is the intersection of the maximal left ideals. By Proposition 1.3.4, in
a local ring, the radical coincides with the maximal ideal.

1.3.7. Proposition. For any ring R, the radical of R is a 2-sided ideal.

Proof.  If I is a maximal left ideal, the annihilator of R/I in R certainly
is contained in I. Hence

n Anna(R/I)  2 (7 I = rad R.
I a max. left ideal I

On the other hand,

Anna(R/I)  =  n Anna(k),
&R/I,i#O

an intersection of maximal left ideals. So rad R is exactly the intersection
of the AnnR(R/I),  and so is 2-sided. 0

Remark. The proof showed that the radical of R is the set of elements
that annihilate all simple left R-modules. One observation we will need
later is that since every simple module for M,(R) is isomorphic to one of
the form R” @R M with M a simple R-module, any matrix all of whose
entries lie in rad R must annihilate all such modules, hence must be in the
radical of M,(R).

1.3.8. Proposition. For any ring R, the radical coincides with

{x E R : Va E R, 1 - az has a left inverse}

and with the intersection of the maximal right ideals.

Proof. First we show that rad R is contained in the indicated set. If x
lies in every maximal left ideal, then Rz lies in every maximal left ideal.
Suppose a E R and 1 - az does not have a left inverse. Then 1 - ax lies
in a proper left ideal, hence in a maximal left ideal M. Since ax E M, we
have 1 E M, a contradiction.

Conversely, suppose that for all a E R, 1 - aa: has a left inverse. Let
M be a maximal left ideal. If x 4 M, then Rx + M = R. Thus for some
a E R, 1 - ax E M, a contradiction. So rad R coincides with

{x E R : Va E R, 1 - ax has a left inverse}.
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Similarly, we can define the right radical

r-4 R = n max. right ideals

= {z E R : Va E R, 1 - xa has a right inverse}.

Since rad R is a right ideal by 1.3.7, if x E rad R and a E R, there is a c E R
with (1 - c)(l - xa) = 1. This gives (1 - xa)(l - c) = 1 + zac - cxa, and
since x E rad R, xac - cxa E rad R. Thus 1 + xac - cxa has a left inverse,
which shows 1 -c has a left inverse. Since it also has a right inverse, namely
1 - xa, they coincide, and 1 - za is invertible with inverse 1 - c. Hence
rad R s r-rad R. By symmetry, r-rad R E rad R and the two coincide. El

1.3.9. Theorem (Nakayamaís Lemma). Suppose R is a ring and M
is a finitely generated R-module such that (rad R)M = M. Then M = 0.

Proof. Suppose M # 0. Pick a set of generators x1, . . . , x, for M with
m as small as possible. (This implies in particular that each xj # 0.) By
the assumption that (rad R)M = M, there are elements ~1, . . . , r, in rad R
such that

Hence
(1 - T,)X, = ?-1x1 + -. . + Tm-_1Xm__1.

By Proposition 1.3.8, 1 - T, is invertible; hence x,,, can be expressed as a
linear combination of x1,  . . . , x,-l. This contradicts the assumption that
m was as small as possible. 0

1.3.10. Corollary. If R is a ring, M is a finitely  generated R-module,
andxl,..., xm E M, thenxl,... , x, generate M if and only if their images
&, . . . , &,, generate M/(rad  R) M as an R/ rad R-module.

Proof. The ìonly ifî statement is trivial. Suppose 21, . . . , km generate
M/(rad R)M. Let iV = &l + . . . + Rx, C M and consider M/N. This
satisfies the hypotheses of Nakayamaís Lemma, so M/N = 0 and M =
N. 0

1.3.11. Theorem. If R is a local ring, not necessarily commutative, then
every projective finitely generated R-module is free with a uniquely defined
rank.  In particular, Ko(R)  g Z with generator the isomorphism class of a
free  module of rank  1.

Proof. Note R/ rad R is a division ring D. If M is a finitely generated
projective R-module, we may assume M @ N = R” for some k. Then
M/(rad  R)M and N/(rad  R)N are D-modules, hence are free, say of ranks
m and n, respectively, with m+n = k. Choose basis elements and pull them
back to elements xl,. . . ,x, E M, x,+1,.  . . , xk E N. By Corollary 1.3.10,
these generate Rî.  We want to show that xl,. . . , xk are a free basis for
Rk . This will show in particular that x1, . . . , x, are a linearly independent
generating set for M, so that M is free with the uniquely determined rank

rank M = dimD M/(rad R)M.
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Let el,. . . , ek  be the standard free basis for Rî.  Since we now have two
generating sets for Rk, each can be expressed in terms of the other, and
there are elements aij, bij E R with

k k

ei = c aijxj, Xi  = c bij ej .
j=l j=l

Thus we get

so

k k

j=l kl

k k(aijbjl  - &)el = 0,
j=l 1~1

and if A = (aij),  B = (bij), this means (since the el are linearly indepen-
dent) that AB = I. Substituting the other way, we get

k k

and since the ~1 are linearly independent modulo the radical of R, this
shows BA - I E M,(rad  R) E rad M,(R) (using the remark following
1.3.7). By Proposition 1.3.8, BA is invertible, hence B is invertible. Since
A was a left inverse for B, this shows it is also a right inverse, i.e., BA = I.
This proves the x1, . . . , x, are a free basis for Rî. Cl

Part of the interest in local rings stems from the importance of localiza-
tion as a technique for studying more general commutative rings. Recall
that if R is a commutative ring, the set Spec  R of prime ideals in R be-
comes a topological space, called the spectrum of R, when equipped with
the s+called Zariski topology. The closed sets EI in this topology are
parameterized by the ideals I of R, where for I 9 R,

1.3.12. Proposition. Let R be a commutative ring and let Spec R be
its prime ideal spectrum. If P is a finitely generated projective R-mod-
ule, then P has a well-defined rank function rank P : Spec  R -+ N, and
this function is continuous. In particular, if R is an integral domain, it is
constant. Furt_hermore,  for any commutative ring R, there is a splitting
&(R) = Z @ K,,(R).

Proof. Given p E Spec  R, Pp 2 R, @R P is a finitely generated projective
module over R, , which is a local ring. So by Proposition 1.3.11, it is free
with a well-defined rank, which is the dimension of the associated module
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over the field RP/mPl where mp is the unique maximal ideal of R,. Since
mp = R, 8.R p, the rank at p may also be computed by first taking P/pP,
which is a module over the integral domain R/p, then taking the dimension
of the associated vector space over the field of fractions of R/p.

Next we prove continuity of the rank function. One way of seeing this is
via the idempotent picture. Suppose P is defined by an idempotent matrix
p E M,(R). Then rankp P = k if and only if the image of p in M,(R/p)  has
rank k. Thus rankp  P < k if and only if every (k + 1) x (k + 1) submatrix
of p has a determinant in p. This is clearly a closed condition, since itís
equivalent to saying p contains certain specific elements of R, and the most
general closed set in Spec R is of the form {p : p > I} for some ideal I. But
itís also an open condition since

rankpskwrank(l-p)>n-k.

To prove the final remarks, note that if R is an integral domain, then
(0) is an open point in Spec R, hence Spec R is connected and rank P must
be constant. The splitting map &Lo(R) -t Z for a general commutative ring
is obtained simply by fixing a point p E Spec  R and computing the rank
there. Cl

1.3.13. Exercise (The finite generation hypothesis in Nakayamaís
Lemma is necessary). Show from Nakayamaís Lemma that if R is a left
Noetherian ring and (rad R)2 = rad R, then rad R = 0.

Let R be the ring of germs at 0 of continuous functions I[$ + Iw.  Show
that R is a local ring, with radical the germs of functions f with f(0) = 0,
and that (rad R)2 = rad R. (R is not Noetherian, which is why this is
possible.)

1.3.14. Exercise. Compute Ke(Z/(m))  in terms of m, for any integer
m > 0. Hint: write m aa a product of prime powers and use the Chinese
Remainder Theorem to get a corresponding splitting of Z/(m) as a product
of local rings. Then use Theorem 1.3.11 and Exercise 1.2.8.

4. KO of Dedekind domains
A particularly rich family of rings for which Ke is interesting are the
Dedekind domains. We begin with the definition and basic properties of
these domains, and then proceed to the most important examples, namely,
the rings of integers in number fields. In this section R will always
denote a commutative integral domain embedded in its field of
fractions F.

1.4.1. Dekinition.  A non-zero R-submodule I of F is called a fractional
ideal of R if there exists some a E R with aI C R. Clearly a non-zero
ideal of R may be viewed as a fractional ideal; for emphasis, such an ideal
is called an integral ideal. Also, if 5 E F (a, b E R; a, b # 0), then
R( f ) is a fractional ideal since bR( %) C R. Such a fractional ideal is called
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principal. One can multiply fractional ideals, and under multiplication
they form an abelian  monoid  with identity element R.

1.4.2. Definition. R is called a Dedekind domain or Dedekind ring
if the fractional ideals under multiplication are a group, i.e., if given a
fractional ideal I, there is a fractional ideal 1-l with I-l1 = R. Observe
that necessarily 1-l = {u E F : a1 C R}. For if J = {a E F : al z R},
then 1111 c R so II1 & J, but then

R = II-í C IJ C R,

so II-l = IJ and II1 = I-ëIJ = J.

1.4.3. Definition. Note that the principal fractional ideals are a subgroup
of the fractional ideals isomorphic to FX/RX.  The class group of the
Dedekind domain R is defined to be

C(R) =

{group of fractional ideals}/{group of principal fractional ideals}.

1.4.4. Proposition. The class group of a Dedekind domain may also be
identified with the set of R-module isomorphism classes of integral frac-
tional ideals.

Proof. Clearly any fractional ideal is isomorphic to an integral one I
(via multiplication by some element of R \ (0)).  And if I = (J)(Ra),
then multiplication by a implements an R-module isomorphism J -+ I.
Conversely, if cp : I -+ J is an R-module isomorphism and ue E I 1 {0},
then for any a E I,

so cp(ue)l = ueJ and [I] = [J] in C(R). Cl

1.4.5. Theorem. If R is Dedekind, then every fractional ideal is finitely
generated and projective. In particular, R is Noetherian.

Proof. Let I be a fractional ideal. Since II11 = R, there are elements
n,...,Gx E 1-l and ~1,. . . , yn E I such that x:=1 ziyi = 1. If b E I,
then b = C(bxi)yi with bxi E I-ëI  = R, so ~1,. . . , yn generate I. Thus
I is finitely generated. Since every ideal of R is finitely generated, R is
Noetherian.

But in addition, the homomorphism R” --f I defined by (ai, . . . , a,) I+
C aiyi splits, with right inverse b H (bxl, . . . , bxn),  by the same calcula-
tion. So I is isomorphic to a direct summand in R” and so is projective by
Theorem 1.1.2. 0

1.4.6. Corollary. If R is Dedekind, then every finitely generated projec-
tive R-module is isomorphic to a direct sum of ideals. In particular, the
isomorphism classes of the ideals generate Ke (R) .

Proof. We use the same argument as in the proof of Theorem 1.3.1.
Let A4 be a finitely generated projective module over R. We may assume
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that M is embedded in some Rn. We argue by induction on n that M is
isomorphic to a direct sum of k ideals for some k 5 n. If n = 0, there
is nothing to prove. So assume the result for smaller values of n and let
r : R” ---)  R be projection on the last coordinate. Note that n maps M onto
an R-submodule of R, i.e., an ideal. If r(M)  = 0, then we may view M as
embedded in kerr z Rî-’  and use the inductive hypothesis. Otherwise,
n(M) is a non-zero ideal I and so is projective by Theorem 1.4.5. Hence
M splits as kern\M  @ I (recall the remarks in 1.1.1). Since we may view
kern)M  as embedded in Rnpl, we may apply the inductive hypothesis to
conclude that itís isomorphic to a direct sum of kí ideals, k’ < n - 1. So
M is a direct sum of k ideals with k = kí + 1 2 (n - 1) + 1 = n. Cl

Our next goal is to relate Ko(R)  to C(R), but first we need to develop
more of the theory of Dedekind domains. This will also enable us to prove
a useful characterization of Dedekind domains that will show that the ring
of algebraic integers in a number field is a Dedekind domain. The next
theorem generalizes the ìfundamental theorem of arithmeticî (unique fac-
torization of an integer into primes).

1.4.7. Theorem. In a Dedekind domain R, every prime integral ideal is
maximal. And every proper integral ideal can be factored uniquely (up to
renumbering of the factors) into prime (or maximal) ideals. The group of
fractional ideals is the free (multiplicative) abelian  group on the (non-zero)
prime ideals.

Proof. (a) Suppose 0 5 I 5 R and I is prime but not maximal. Then
there exists an integral ideal J with I 5 J 5 R. Let K = J-lI;  since
I 5 J, K 5 J-l J = R. Since JK = I and I is prime but J g I, K C I.
But then I = JK C JI 5 RI = I, a contradiction. So I is maximal.

(b) Existence of factorizations. Let

C = {proper integral ideals that are not products of prime ideals}.

If this is empty, weíre done. Otherwise, since every ascending chain of
ideals in R has a maximal element (R is Noetherian by Theorem 1.4.5), C
has a maximal element I by Zornís Lemma. I canít be a maximal ideal
(otherwise it would be prime itself and would have a trivial factorization
I = I) so I 5 Ii 5 R for some ideal 11. Let 1, = lcll. This is also an
ideal in R since I C II, and since I 5 II, it is a proper ideal containing I
properly. Since 11 and 1s are both strictly bigger than I and I was maximal
in C, both have factorizations into primes. But since I = 1112,  multiplying
gives a factorization of I, a contradiction.

(c) Uniqueness of factorizations. Suppose Pi .. . P, = &I . . . Qn
with Pi, Qj prime and m < n. Then PI > PI. .. P, = Q1 . . .Qn so
some Qj lies in PI. After renumbering if necessary, we may assume Qi C
PI. Write Qi = SlPl by the Dedekind property (where 5í1  = PcíQ1).
Multiplying through by PF1 gives Ps . . . P, = SlQ2  . . . Qn. Continuing by
induction, we get down to the case where m = 1, in which case it is clear
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that we must have n = 1 and Qr = PI. So factorizations  into primes are
unique.

(d) Clearly thereís a map from the free abelian  group on the prime
ideals into the multiplicative group of the fractional ideals. By (b) above,
itís surjective.  If there is something non-trivial in the kernel, we have
Pîë.. . P,ì?  = R for some distinct prime ideals Pj and some nj E Z. If for
szme  j, nj < 0, multiply through by P!ìì. Then we end up with some
ideal in R having two distinct factorizat:ons,  contradicting (c). Cl

1.4.8. Lemma. Let R be any commutative ring and let Ii, 1s be ideals
inR. IfIl+Is=R,  thenIiIs=IInIs.

Proof. Clearly 111s  C Ii n1s. On the other hand, if al E 11, a2 E 12, and
al + a2 = 1, then for x E Ii n 4, x = alx + asx E 1112 + 1211 = Ii&. 0

1.4.9. Lemma. Let R be a Dedekind domain and let I be a fractional
ideal, J an integral ideal. There exists a E I such that I-la + J = R.

Proof. Let PI,.  . . , P, be the distinct prime ideals that occur in the fac-
torization of J given by Theorem 1.4.7. Choose ai E IPi . + . i)i.. . P,. with
ai 4 IPi e.1 P,.. Let a = cai. Note aiI_’ C Pj if j # i, but aiI_’ g Pi,
site otherwise weíd have

ail-l  cnPj=Pl” . P, by iterated use of (1.4.8),

hence
ai E IPl*..Pr,

a contradiction. Now note that I-la p Pj for any j. Itís an integral ideal
and this says I-la+  J canít be divisible by any Pj. But it canít be divisible
by any other prime ideal, either, by the choice of a, so it canít be a proper
ideal and must be all of R. Cl

This implies that a Dedekind domain doesnít miss being a PID by very
much. If R is a PID, any fractional ideal is singly generated. In a Dedekind
domain, the best one can say along these lines is the following.

1.4.10. Corollary. If R is a Dedekind domain, any fractional ideal of R
can be generated by at most two elements.

Proof. Let I be a fractional ideal, 0 # b E I. Let J = bI_ë,  which is an
integral ideal. By Lemma 1.4.9, there is some a E I with al-’ + bI_l = R.
T h e n I = R a + R b .  0

1.4.11. Lemma. Suppose R is a Dedekind domain and II, I2 are frac-
tional ideals for R. Then Ii 03 I2 2 R 03 IiI2 as R-modules.

Proof Choose al # 0 in 11 and let J = alI;ë,  which is an integral ideal.
Apply Lemma 1.4.9 with I = Is. We get a2 E Is such that I;ëas+alI;’  =
R. Choose bl E IL1, b2 E Ipl with albl + a2b2  = 1. Then
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showing that (ii Ly) is invertible with inverse ( :i, I:), and

(21, $2) H (21,  x2)

gives the desired isomorphism (with inverse given by multiplication by the
inverse matrix). Cl

1.4.12. Theorem. Let R be a Dedekind domain. Then any projective
R-module of rank k can be written as Rkml ~3 I, with I an ideal, and the
isomorphism class  of I is uniquely determined. If P and Q are finitely
generated projective modules of the same rank k, say P Z Rî-l  $ I1 and
Q Z Rî-l@  12 for ideals Ii and 12, the map [P] - [Q] I-+ IlIT1 sets up an
isomorphism from go(R)  to C(R). In fact,

[Rk-' @I] I-+ (k, [I])

sets up an isomorphism of abelian  groups

K,,(R) + Z @ C(R).

As a commutative ring (see 1.1.9),

Ko(R) = {(k, [I]) : k E z, [I] E W-O),

with the operations

(1.4.13)

(k, [I]) + (kí,  [Ií])  = (k + kí, Wí]),

(k, [I]) . (6 [1í1)  = Fí,  [Ilîë[Iíjî),
rank : (k, [I]) ++ k E Z.

Proof. By Corollary 1.4.6, every finitely generated projective module
P over R is isomorphic to a direct sum Ii @ . . . @ 4 of ideals, and by
Proposition 1.3.12, P also has a well-defined rank. If I is an ideal, then
rank I = dimF(F@R  I) = dimF  F = 1, so the rank of P is just the number
k of ideals in a direct sum decomposition. Using Lemma 1.4.11 iteratively,
we can rework the decomposition into the form Rkwl @I with a single ideal
I. The only problem is to show that if

(Rî-’  @ 11) 2 (Rî-’  @ 12),

then Ir Z 12 as R-modules, or (equivalently, by Proposition 1.4.4) [II] =
[I21  in C(R). 0 nce this is done, the formulae 1.4.13, and the identification
of ko(R)  with C(R), then follow upon taking the direct sum or tensor
product of Rk @ I and of Rîí  @ Ií and applying Lemma 1.4.11 iteratively.
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So suppose we have an isomorphism

with inverse p. Since any R-module map from one ideal to another is given
by multiplication by an element of F (compare the proof of Proposition
1.4.4), a and p are induced by right multiplication by lc x k matrices A
and B (with entries in F) which are inverses of each other. Now if X is the
diagonal matrix with diagonal entries (1, 1, . . . ,1,x), where z E 11, then
right multiplication by X maps R” into Rî-’ @ II, hence right multiplica-
tion by XA maps Rk into Rkml @ 12. The rows of XA are the images of the
standard basis vectors for Rk under this map, so they have their first k - 1
entries in R and last  entry in 12. Thus expansion of the determinant along
the last column shows that det(XA)  E 1s. Since det X = 2, we obtain the
condition z det A E I2 for all z E Ii. Similarly y det B = y(det A)-l E II
for all y E 1s. So multiplication by det A implements an isomorphism from
IitoIs.  0

We proceed now to the characterization of Dedekind domains. This will
eventually make it possible to show that the rings of integers in number
fields are Dedekind domains. Recall that a subring  R of another ring S
is called integrally closed in S if any element of S which is a root of a
manic  polynomial with coefficients in R actually lies in R.

1.4.14.  Lemma. Let R be a Noetherian integral domain which is in&
grally closed in its field of fractions F. Suppose I is a fractional ideal of R.
Then {s E F : SI G I} = R.

Proof. Since R is Noetherian, I is finitely generated. Let S = {s E F :
SI s I}. Clearly R C S. But ifs E S, s is integral over R, by the following
argument. Choose generators aj for I. Then there are elements bjk E R
such that saj = c bjkak.  Thus if B = (b.jk),  s is an eigenvalue of B and
so is a root of its characteristic polynomial, which is a manic  polynomial
with coefficients in R. Hence s E R since R is integrally closed. Thus
SCR. ê i

1.4.15. Lemma. Let R be a Noetherian commutative ring and let I be a
non-zero proper ideal of R. Then I contains a product of non-zero prime
ideals.

Proof.  Suppose the result is false, and let C be the family of non-zero
proper ideals of R which do not contain a product of non-zero prime ideals.
Since R is Noetherian, C must contain a maximal element (under inclusion),
say I. Clearly I is not prime, so there must be a, b E R with ab E I,
a, b $! I. We have I !j I + Ra, I $ I + Rb. If I + Ra = R, then
(I+Ra)(I+Rb) = I+Rb 2 I, whileon  theotherhand (I+Ra)(I+Rb) &
I+Rab c I, a contradiction. So I 5 I+Ra  5 R. Similarly I !j I+Rb 5 R.
Since 1 was maximal in C, I + Ra and I + Rb do not lie in C. Thus
I+Ra>  PI.. .Pr, Ii-Rb_>Ql.. . Qs, for some prime ideals Pj and Qk.
Then I = (I + Ra)(I + Rb) 2 PI . . . P,Ql . . . Qs, a contradiction. 0
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1.4.16. Lemma. Let R be a Noetherian  integral  domain in which every
prime ideal is maximal. Let I be a non-zero proper ideal of R. Then there
exists c E F with c $ R such that cl C R.

Proof. Let a # 0 in I. Then Ra contains by Lemma 1.4.15 a product of
non-zero prime ideals, say PI . . . P,, and we may assume m is chosen to be
minimal with this property. Let P be a maximal ideal containing I. Then

PI . . . P, C Ra C I G P,

so some Pj C P, say PI g P. Since all prime ideals are maximal, we have
PI = P. If m = 1, then I = Ra = P is maximal and a-l $ R, a-ëI  c R.
If m 2 2, then by minimality of m, Ra 2 Pz . . . P,. Choose b E P2.. . P,,,
withb$Ra,andletc=$.  Thenc$!Rbut

CI C_ cP1 = a-ëbPl  c a-l PI . . . P, C_ a-l Ra = R. Cl

1.4.17. Theorem. A commutative integral domain R is Dedekind if and
only if it has the following three properties:

(u) Every non-zero prime ideal is maximal.
(b) R is integrally closed in its field of fractions F.
(c) R is Noetherian.

Proof. If R is a Dedekind domain, it satisfies (c) by Theorem 1.4.5 and
(a) by Theorem 1.4.7. Suppose a E F, a # 0, and a is integral over R.
Then a is a root of some manic polynomial ZP + an_~xn-’  +. . - + ao, where
ao,*.., a,,_1 E R. Consider M = R + Ra + Ra2  + . +a + Ran-l. This is
an R-submodule of F, and since an = -a,_laî-’  - ... - a~, it is stable
under multiplication by a. If we write a = E, p, q E R and q # 0, then

Qn-lM G R, so M is a fractional ideal. Multiplying aM E M by M-l
gives aR s R, so a E R. This shows R is integrally closed.

Now we show the conditions (a)-(c) imply R is Dedekind. Suppose R
satisfies (a)-(c) and I is a fractional ideal. Let J = {a E F : aI E R}. We
want to show IJ = R, so that J is an inverse for I. Now IJ is an integral
ideal. Let K = {a E F : aIJ E R}. By definition, K(IJ) = (KJ)I C R,
so KJ c J. By Lemma 1.4.14, K 2 R. On the other hand, if IJ 5 R,
then K 2 R by Lemma 1.4.16, a contradiction. So IJ = R and I is
invertible. Cl

1.4.18. Theorem. Let F be a number field, i.e., a finite algebraic ex-
tension of Q, and let R be the ring of algebraic integers in F, that is, the
integral closure of Z in F. Then R is a Dedekind domain.

Proof. We need to check the conditions of Theorem 1.4.17. Condition
(b) is the easiest. R C F, and if a E F is integral over R, then it is integral
over Z by ìtransitivity of integrality,î hence already contained in R. So R
is integrally closed.

To check (a), let p be a non-zero prime ideal in R. Then p fl Z is a
prime ideal in Z. We claim it canít be zero. Indeed, if b # 0 is in p,
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the product NQ(~J,Q(~)  of the conjugates of b (in some Galois extension
K 2 F) is f the constant term of the minimal polynomial of b, which
by the assumption that b E R has coefficients in Z. Now this product of
the conjugates of b is a product of b with a product c of other algebraic
integers, and since bc E Z C F, c E F and is integral over Z. Hence c E R
and 0 # bc E Rb n Z C p n Z. Thus p II Z is a non-zero prime ideal in Z,
i.e., p fl Z = (p) for some prime number p. Since F is a finite algebraic
extension of Q, R/p must be contained in a finite algebraic extension of
V(n n z) = V(P), in other words in a finite field of characteristic p. Since
a finite integral domain is a field, R/p is a field, i.e., p is a maximal ideal.

It remains to check (c), i.e., that R is Noetherian. One way of seeing
this is by using the trace. Recall that if z E F, T~F,Q(z)  is the trace of
the linear operator of multiplication by x on F, when we regard F as an
n-dimensional vector space over Q, where n = [F : Q]. The trace pairing
(2, Y) H %/Qh) is a non-degenerate symmetric Q-bilinear pairing on F
(since for x # 0 in F, Tr~/Q(xx-ë) = n # 0). Choose elements xi,. . . , A, E
R which span F over Q. (One may obtain such elements by taking any
basis elements for F over Q and then multiplying them by suitably large
(ordinary) integers to kill off any denominators in the coefficients of their
minimal polynomials.) Then

x H (nF/Q(xh),  . *. 7 %/Q&))

is an embedding of R into Zn. In particular, R is a finitely generated
&module,  so any ascending chain of ideals in R is an ascending chain of
submodules in a finitely generated Z-module, and so terminates (since Z is
Noetherian). Thus R is Noetherian. 0

Finally, we show that the Dedekind domains given by Theorem 1.4.18,
which are the main subject of study in algebraic number theory, have finite
class groups. The computation of these groups is not easy and is a problem
of major interest.

1.4.19. Theorem. Let F be a number field, i.e., a finite algebraic ex-
tension of Q, and let R be the ring of algebraic integers in F, that is, the
integral closure of Z in F. Then the class group I?-,(R) is finite.

Proof.  The proof requires the notion of the norm of an ideal. If I is
an integral ideal of R, with prime factorization PIîí  . . . Pmí,  then by the
Chinese Remainder Theorem,

Since R/Pj is a finite field for each j (by the proof of Theorem 1.4.18) and
R/PJyi  clearly has a composition series with nj composition factors, each
isomorphic to R/Pj, R/PJJ’ is finite with IR/PjIn’ elements, and R/I is
finite. Thus we can define

j=l
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It is clear that this norm is multiplicative:

11~1~211  =  11-7111  . 111211.

If I happens to be a principal ideal (a), note that since NF,q(a) is the
determinant of the Z-linear operator of multiplication by a on R (which is
isomorphic to Z” as a Z-module), Ra has index ( NF,Q(u))  in R and thus

II(~ = INF/&+
Recall from the proof of Theorem 1.4.18 that if P is a prime ideal with

PI% = (p), then R/P is a finite extension of Z/(p) of degree 5 n = [F : Q],
so that [[PII = pi for some j with 1 5 j 5 n. Thus for any C > 0, lIPI\  5 C
implies p 5 C for the corresponding p. On the other hand, for a fixed prime
number p, there are only finitely many prime ideals P c R with PnZ = (p)
(namely, those prime ideals occurring in the prime factorization of Rp). So
putting all of this together, we see there are only finitely many ideals I
satisfying 11111  < C.

To prove the theorem, it therefore suffices to show that there is a con-
stant C > 0 such that every element of C(R) has a representative I with
111/l 5 C. Choose a basis Xi,. . . , A, for R as a Zmodule. (That such a
basis exists was shown in the proof of Theorem 1.4.18.) Let A be the max-
imal absolute value of a conjugate of one of the Xj in @ and let C = nîAî.
Choose any element of C(R) and represent it by a fractional ideal of the
form K = J-l, with J an integral ideal. We will show there is another
representative I for the same ideal class with IlIll  5 C. Consider the set

S = {oiXr + .. . + anAn : aj E 27, 0 5 aj 5 [II  Jllí]*}
(The square brackets denote the ìgreatest integerî function.) This set has

([llJll"l  + 1)”  > IIJII = IRIJI
elements, so there must by the pigeonhole principle be two elements 17
and C of 5’ with the same image in R/J.  Let c = q - C E J and let
I = (<)J-’ = (J)K N K. Th’is is an integral ideal and (<) = IJ, so that

ll~llllJll = II(E)II = I NF/Q(~)I-
On the other hand, since c is the difference of two elements of S, we

may write

so
< = uiXr +...+a,& with lujl 5 [l]Jlj~],

II41 II JII = I b/a(6)I
= n lUIcJ(X1) +. . * + U,Q(A,)l

u:F-C

5 J, (nlll  JII ìIA)

I nn(l JIIA” = C/l Jll,
proving the desired estimate. 0
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1.4.20. Exercise (Construction of a non-trivial torsion element in
a class group). Let R = Z[&S].

(1)

(2)

(3)

(4)

(5)

(6)

1.4.21.

Show that R is the algebraic closure of Z in Q(G), so that R is
a Dedekind domain by Theorem 1.4.18.
Show that p = (3, 2 + fl) is a prime ideal in R. Hint: itís easy
to see that R/p is a field of 3 elements, so that p is a maximal
ideal.
Show that p is not principal. Hint: show that neither of the two
generators divides the other, and that if there were a single gener-
ator a + bn, then

(a + b&!?)(c  + d-) = 3 for some a, b, c, d E Z,

and (multiplying by complex conjugates)

(aî + 5b2)(c2  + 5d2) = 9.

If the factorization is non-trivial, a2 + 5b2 = 3, which is impossible.
Show that p is an element of order 2 in the class group C(R). Hint:
by (2), it is not of order 1. Show that p2 = (2 + G).
In fact, C(R) is the cyclic group of order 2 generated by p, though
it is hard to prove this by such elementary methods. Can you
supply a proof?
Suppose we replace R by the integral closure R’ of 2~s) in Q( fl).
This is a localization of R that will have the property that if p is
a maximal ideal in Rí, then p n Z(s) = (3). Show that R’ is also
Dedekind and compute its class group.

Exercise (A ring of algebraic integers that is almost, but-~
not quite, Dedekind). Let R = Z[d--31,  with field of fractions F =
mm.

(1) Show that R is not integrally closed in F, so that R is not a
Dedekind domain, by Theorem 1.4.17.

(2) Exhibit a fractional ideal in R that does not have an inverse. Is
this fractional ideal a projective module?

1.4.22. Exercise. Show that a Dedekind domain R with only finitely
many prime ideals is a PID, using the following (slightly non-standard)
sketch:

(1)

(2)

(3)

Let Pi,.. . , P,, be a complete list of the distinct maximal ideals.
Show using the Chinese Remainder Theorem that

R/radR  2 R/PI x ... x R/P,,

a finite product of fields.
Let P be an integral ideal of R. Show using (1) and the fact that
P has rank 1 at each prime ideal that P/(rad R)P is free of rank
1, hence principal.
Lift a generator of P/(rad  R)P to a generator of P using Corollary
1.3.10.
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1.4.23. Exercise (Complete calculation of a non-trivial class
group). In this exercise, let R = Iw[z, y]/(z’ + y2 - l), the ring of (real-
valued) polynomial functions on the circle.

(1) Show that R is a Dedekind domain.
(2) If p is a prime (and thus maximal) ideal in R, show that R/p is

an algebraic extension of R, and thus isomorphic to either I% or Cc.
Show that both possibilities can occur, and that in the first case,
p is of the form (Z - o, y - p), where a, /3 E R and a2 + p2 = 1,
and that in the second case, p is a principal ideal generated by
some linear polynomial y + b, where b E R, (bl > 1, or 2 + ay + b,
where a, b E IR, b2 - a2 > 1. Deduce that the class group kc(R)  is
generated by the classes of the ideals (Z - (Y, y-p),  where (Y, p E lR
ando2+p2=1.

(3) Show that if pi and pz are prime ideals of the form (Z - oj, y - &),
respectively, where oj, /?j E R and c$ +/3; = 1, j = 1, 2, then pip2
is a principal ideal, with generator a linear polynomial vanishing
at both (~1, /?I) and ((~2,  fi2),  if these points are distinct, or else
the linear polynomial oiz + /3iy - 1, if p2 = pi. Conclude that all
non-principal prime ideals of R define the same element of the class
group, and that this element is of order 2, hence that f?o(R) 2 Z/2.

1.4.24. Exercise (More on class groups of quadratic number
fields). Let d be a square-free integer and let F = Q(a),  which is the
most general quadratic extension of Q.

(1) Show that the ring R of algebraic integers in F is Z[Jd, provided

that d = 2 or 3 mod 4, and is Z @ if d E 1 mod 4. (This
[ 1

explains Exercises 1.4.20(l)  and 1.4.2;(l).)
(2) Let p E N be a (rational) prime. Show that R/(p) is a two-

dimensional algebra over the field F, of p elements, and that there
are exactly three possibilities for R/(p):

(4 R/(p) g bW(~ì) contains a nilpotent element. In this case
we say p is ramified. Show that this case happens exactly
when p divides d or, if d G 2 or 3 mod 4, when p = 2.

( b )  R/(P) ” Fp 2 is a field, so the principal ideal (p) in R is
maximal. In this case we say p is inert.

(c) R/(P) = F, x F,. In this case we say the prime p splits in
F .

(Hint: suppose R = Z[c] with t2 = d, which is the case if d E
2 or 3 mod 4. Then R/(p) 2 IFP[z]/(z2  - d), so you just have to
analyze whether the polynomial x2 -d has 0, 1, or 2 roots in Z/(p).
The case d E 1 mod 4 is similar; itís just that the polynomial is
different.)

13) Show that in case (a), the ramified case, (p) = p2 for some prime
ideal p of R, and that in case (c), the split case, (p) = plp2 for some
distinct prime ideals of R. In either case, if R has no elements of
norm p, then the prime ideals occurring cannot be principal and



5. Relative KO and excision 27

are thus non-trivial in C(R). Thus show that in the ramified case,
one gets an element of C(R) of order 2.

(4) Show how Exercise 1.4.20 fits into this general framework.

5. Relative KO and excision
One of the things that makes K-theory so computable and useful is the fact
that it behaves like a ìhomology theoryî for rings. (The precise connection
with a cohomology theory for topological spaces will be made in the next
section.) In particular, when R is a ring containing a two-sided ideal I,
there is an exact sequence relating Ke (R), Ko (R/I),  and a certain ìrelative
K-group.î This exact sequence looks something like the exact sequence in
cohomology for a pair of topological spaces (X, A):

Hj(X, A) --f  Hj(X) -+ Hj(A).

The first aim of this section is to define the relative group Ko(R, I) and
the exact sequence relating it to K,-,(R) and Ko(R/I).  Then we prove an
algebraic analogue of the excision axiom for homology and develop some
applications.

1.5.1. Definition. Let R be a ring and I C R an ideal (in this section, al-
ways two-sided). The double of R along I is the subring  of the Cartesian
product R x R given by

D(R, I) = {(z, y) E R x R : 2 - y E I}.

Note that if pi denotes projection onto the first coordinate, then there is a
split exact sequence

(1.5.2) 0 -+ I + D(R, I) = R + 0,

in the sense that pi is split surjective  (with splitting map given by the
diagonal embedding of R in D(R, I)) and that kerpr  may be identified
with I.

1.5.3. Definition. The relative Kc-group of a ring R and an ideal I is
defined by

K,,(R, I) = ker ((PI), : Ko(D(&  1)) -+ h(R)).

Relative K-theory is closely linked to the phenomenon that while any
matrix over R/I can be lifted to a matrix over R, an invertible matrix
cannot always be lifted to an invertible matrix. The following lemma will
also be used in the next chapter.
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1.5.4. Lemma. Let R be a ring and I c R an ideal. Then if A E

GL(n, R/I), the 2nx 2n matrix (: :I)
lifts to a matrix in GL(2n,  R).

Proof. Note that

(: :I)=(: :)(A-1 :)(: :)(: -b).

The matrix
( >

y _d lifts ìas isî to an invertible matrix over R. If B

and C are any (not necessarily invertible) matrices in M,(R)  lifting A and
A-l, respectively, then

(:, :) and (-ëc ;)
are invertible and lift

(:, :) and (-1-l y).
Now just multiply. Cl

1.5.5. Theorem. Let R be a ring and I c R an ideal. Then there is a
natural short exact sequence

where q*  is induced by the quotient map q : R + R/l and the m a p
Ko(R,  I) + I&(R)  is induced byp2  : D(R, I) + R.

Proof. For simplicity of notation in the proof, if A is an element of R or
a matrix with entries in R, we will often denote q(A), the corresponding
matrix over R/I, by A. First consider an element [e] - [f] E Ko(R, I),
where e = (el, e2), f = (fi, f2) E Idem(D(R, I)). The image of [e] - [f]
koKa(R x R) g Ko(R) x Ko(R) (using (1.24)  is ([ell - [fl], [ez] - [fz]).

9* 0 (p2>*([el - [fl) = 9*([e21  - [f21>  = L&21  - [S21,

whereas [el] - [fi] = 0 since by assumption [e] - [f] E ker(pl),. But since
e, f E D(R, I), 21 = 62 and fi = f2. Thus

k21 - if21 = kil - [SI] = q*([el]  - [fi]) = 0 .

Hence the image of the first map is contained in the kernel of the second.
Now suppose e, f E Idem and q*([e] - [f]) = [k] - [f] = 0. Then 6

and f are stably equivalent, so for suitably large T,

1@ i, = q(e c+ ir) - j CB i, = 4(f a3 b)
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under GL(R/I). Replacing e by e $1, and f by f @ l,, we may assume
i = &(@)-l for some matrix 4 E GL(R/I). In general, jl will not lift to a
matrix in GL(R). However, jr@(i)-’ does conjugate &@b to f@& and lifts
to a matrix h in GL(R) by Lemma 1.5.4. Thus we may replace f by f @ 0
and e by h(e CD O)h-l without changing [e] and [f, and reduce to the case
where 1 = f. This means (e, f) E Idem(D(R, I)). Then [(e, e)] - [(e, f)]
is a class in Ko (D(R, I)) which maps to 0 under (pi), and to [e] - [f
under (~2)~. This completes the proof of exactness. The naturality of the
sequence (under homomorphisms R + Rí sending I + Ií)  is obvious from
the definition of the maps and from functoriality of Kc. Cl

Remark. In general, the map &(R) + Ko(R/I)  is not surjective, and
the map &(R, I) --+ Ko(R)  is not injective. The one exception will be
the case where the ring homomorphism R -+ R/I splits. In this case it is
obvious that the map Ko(R) --+  &(R/I) is split surjective, and it will also
turn out (see 1.5.11 below) that Ko(R, I) is the kernel of this map.

Next we want to prove the analogue of the excision theorem for top*
logical homology. Recall that this says that under suitable hypotheses,
the relative homology H.(X, A) is unchanged when a large subset U of
A is removed from both A and X. Under optimal circumstances (for in-
stance, for CW-pairs), H,(X, A) 2 &(X/A)  and thus only depends on
the ìdifferenceî between X and A. The analogous statement for Kc turns
out to be true, and says that the relative group &(R, I) only depends
on the ìdifferenceî between R and R/I, which is measured by I (with its
structure as a ring without unit). In fact, it turns out that Kc makes
sense and is functorial even for rings without unit and for non-unital ring
homomorphisms. With this language, we show that &(R, I) g &(I).

1.5.6. Definition. Let I be a ring that doesnít necessarily have a unit
element. The ring obtained by adjoining a unit element to I, denoted
I+, is as an abelian group just I @ Z, with multiplication defined by the
rule

(2, n) . (y, m) = (zy + ny + m2, mn),

x, y E I; m, n E Z. It is an easy exercise to check that this is indeed a
ring with unit, the unit element being (0, 1). The notation I+ is suggested
by topology, where X+ is standard notation for a space X with a disjoint
basepoint added.

It is useful to note that if a! : I -+ Ií is a homomorphism in the cate-
gory of rings without unit, it automatically extends uniquely to a unital
homomorphism I+ 3 I:.

Remark. The reader might wonder what happens if I already has a unit
element, say e. In this case, there is a unital  isomorphism o : I+ + I x Z
(the Cartesian product of rings) defined by

a(~, n) = (x + ne, n),
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since

a ((xc, n>. (y, m)) = cr(sy + ny + mx,  mn)
= (xy + ny + mx + mne, mn)

= (x + ne, n) + (y + me, m)

= cx(2,  n) . a(y, m).

1.5.7. Definition. Let I be a ring that doesnít necessarily have a unit.
Note that one has a split exact sequence

(1.5.8) 0-+I+I+Gz+0.

Define
&(I) = ker (p*  : &(I+) + Ko(Z) E Z) .

At first sight, there might appear to be some ambiguity here, since if I has
a unit, we have given two different definitions of Ko(I).  However, by the
remark above, in this case I+ %! I x %, so &(I+)  2 I&(I)  6B Ko(Z),  and
ker p* just picks out the first summand. So the new definition agrees with
the old one in this case.

Also, this new definition makes & into a functor from the category of
non-unital rings to abelian  groups. This observation is occasionally useful
even when one wants to deal only with rings with unit. For instance, if R is
a ring with unit, there is a non-unital homomorphism R + M,(R)  defined

a 0
bya- o o .

( 1
The reader can check that the homomorphism induced

by this non-unital homomorphism is the Morita invariance isomorphism of
Theorem 1.2.4.

1.5.9. Theorem (Excision). If I is a two-sided ideal in a ring R, then
Ko(R, I) G’ &(I) (and thus does not depend on R, only on the structure
of I as a ring without unit).

Proof. Define a unital  homomorphism y : I+ + D(R, I) by

(x,n)~(n~l,n~l+x), xEI, nEZ,

and note that the diagram

I+ r D(R, I)

commutes. Hence y* : &(I+)  -+ &(D(R,  I)) sends kerp*  to ker(p&
i.e., maps &(I) to Ko(R,  I).
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Next we show that this map is surjective.  Consider a class [e] - [f E
Ko(& I), where  e =  (el, e2), f =  (A, f2) E Idem(D(R,  1)) ad hl =  VII
in K,-,(R).  After replacing e and f by eel, and f@l,. for a suitably large r,
we may assume that ei and fi are conjugate under GL(R), say ei = gfig-’
for some invertible matrix g. Replacing (fi, f2) by (gfig-l,  gfsg-ë),  we
may assume that in fact fi = ei. Next, if e is an s x s matrix, we may
replace e and f by e @ (1, - ei, 1, - ei) and by f @ (1, - ei, 1, - ei). Note
that there is an invertible 2s x 2s matrix h with entries in R conjugating
el @(l, - el) to 1, @OS. Conjugating everything by h finally reduces us
to the case where e = (ls @ O,, e2), f = (1, $ O,, f2). Since e and f are
matrices over D(R, I), e2 - (ls @ 0,) and fs - (ls $0,) have entries in I.
Now [e] - [f is clearly in the image of &(I).

Finally, we have to show y* is injective on &(I). We may represent a
general element of Ke (I) by [e] - [f , where e, f E Idem and rank p(e) =
rank p(f). As above, if f is an r x T matrix, we may stabilize by taking direct
sums with 1, - f and conjugating, and thus assume f = l,, rankp(e)  = T.
We may also assume gp(e)g-’  = 1, for some g E GL(Z).  Viewing g as an
element of GL(I+) via the split exact sequence 1.5.8, we may replace e by
geg-’  and assume that p(e) = 1,. Now if +y,([e]  - [l,.])  = 0, this means

[(L, e)l = [(b, L-11 in Ko(@R,  4).

We may stabilize if necessary by increasing r and assume that there is a
matrix (gi, gs) E GL(D(R,  I)) with

giLg,l = lr, g2eg;l =  1,.

Then (1, g;lgs) E GL(D(R,  I)) and

(g;1g2)e(g~1g2)-1  =  gT1(g2eg,l)gl  =  gT1L-91  =  1,.

Since gL1g2 3 1 mod I, gy1g2 lies in GL(I+) and this says [e] - [lr] = 0
in Kc(l),  proving that the kernel of y* is trivial. Cl

1.5.10. Examples.

(a) Suppose R = Z and I = (m), where m > 0. Thus R/I = Z/(m).
&(R/I) was computed in Exercise 1.3.14; the map Ko(R) --t
&(R/I) is always injective but in general has a free abelian  co-
kernel of rank k - 1, where k is the number of distinct prime factors
of m. As a ring without unit, I is the free abelian  group on a gen-
erator t satisfying t2 = mt. Hence I+ E iZ[t]/(t2  - mt), a fairly
complicated ring. &(I) is not so easy to compute directly, though
we will find a way to compute it in the next chapter. It turns out
to be a finite abelian  group.

(b) For applications to topology (see Section 1.7 below), rings of the
form R = ZG, the integral group ring of a group G, are of partic-
ular importance. It is a long-standing conjecture that when G is
torsion-free, 20(R) = 0. This is known in some cases, for instance
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when G is free abelian;  this case will be treated in Chapter 3. For
finite groups, Ke(ZG)  is often non-trivial and contains interesting
arithmetic information. Consider the simplest example, when G is
cyclic of prime order p, say with generator t. Then R = ZG may
be identified with Z[t]/(tp - 1). If E = e2rrilJí,  a primitive pth root
of unity, and if S = Z[[],  then S is the ring of integers in the cyclo-
tomic field Q(c), hence is a Dedekind domain by Theorem 1.4.18.
There is a surjective  homomorphism R -+ S defined by sending
t I-+ 5. Since the cyclotomic polynomial fp(t) = P-l + . . - + t + 1
is irreducible, any polynomial g(t) E Z[t] with g(E)  = 0 must be
divisible by f,. In particular, anything in the kernel I of the map
R + S must be a multiple of fp. Note that as an element of R,
fz = pfp. Thus I in this example is, as a ring without unit, the
same as in the last example if we specialize to the case m = p. In
particular, Ke(R, 1) = Ke(Z, (p)). It is a result of Rim, which we
will discuss later on, that the map R -+ S induces an isomorphism
on Ke. In particular, &(R)  2 C(S), the class group of the cy-
clotomic field. This is known to be non-zero for primes p 2 23.
(See Example 3.3.5(b) below.) The smallest group G for which
Ko(ZG) is non-trivial is the quaternion group of order B-in this
case, Ke(ZG) is of order 2 and an explicit generator is exhibited
in Exercise 1.7.20(3)  below.

1.5.11. Exercise. The excision theorem may be interpreted as saying
that the split exact sequence 1.5.2 gives rise to a split exact sequence of
Ke-groups, the first group of which is Ke(1).  The same holds by definition
in the case of the split exact sequence 1.5.8. Using ideas from the proof of
the excision theorem, show that if

O-,I-+R-,R/I+O

is split exact (i.e., I is an ideal in a ring R, and there is a splitting home
morphism R/I 4 R), then

o ---) &(I) -+ I%(R)  -+ &(RII)  * 0

is split exact.

6. An application: Swanís

Theorem and topological K-theory
To many mathematicians, the term K-theory suggests not algebraic K
theory but topological K-theory, an exceptional cohomology theory 01
compact Hausdorff spaces defined using vector bundles. The connectio:
between the two comes from specializing what we have done to the cas
where R is a ring of continuous functions. In this context, the Excisio
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when G is free abelian;  this case will be treated in Chapter 3. For
finite groups, Ke(ZG)  is often non-trivial and contains interesting
arithmetic information. Consider the simplest example, when G is
cyclic of prime order p, say with generator t. Then R = ZG may
be identified with ?I&]/(@’  - 1). If [ = e2ri/P, a primitive pth root
of unity, and if S = Z[<],  then S is the ring of integers in the cyclo-
tomic field Q(E), hence is a Dedekind domain by Theorem 1.4.18.
There is a surjective  homomorphism R -+ S defined by sending
t H <. Since the cyclotomic polynomial fp(t)  = tp-’  + . . . + t + 1
is irreducible, any polynomial g(t) E Z[t]  with g(J) = 0 must be
divisible by f,. In particular, anything in the kernel I of the map
R -+ S must be a multiple of f,. Note that as an element of R,
fi = pfp. Thus I in this example is, as a ring without unit, the
same as in the last example if we specialize to the case m = p. In
particular, Ke(R, I) = Ke(Z,  (p>).  It is a result of Rim, which we
will discuss later on, that the map R -+ S induces an isomorphism
on Ks. In particular, ko(R) 2 C(S), the class group of the cy-
clotomic field. This is known to be non-zero for primes p 2 23.
(See Example 3.3.5(b) below.) The smallest group G for which
Ko(ZG) is non-trivial is the quaternion group of order 8-in this
case, &(ZG)  is of order 2 and an explicit generator is exhibited
in Exercise 1.7.20(3)  below.

1.5.11. Exercise. The excision theorem may be interpreted as saying
that the split exact sequence 1.5.2 gives rise to a split exact sequence of
Ke-groups,  the first group of which is Kc(l).  The same holds by definition
in the case of the split exact sequence 1.5.8. Using ideas from the proof of
the excision theorem, show that if

o-tI-,R+R/I-,O

is split exact (i.e., I is an ideal in a ring R, and there is a splitting horn@
morphism R/I + R), then

o --+ K,,(I) -+ h(R) -+ Ko(RII) * 0

is split exact.

6. An application: Swanís
Theorem and topological K-theory

To many mathematicians, the term K-theory suggests not algebraic K-
theory but topological K-theory, an exceptional cohomology theory on
compact Hausdorff spaces defined using vector bundles. The connection
between the two comes from specializing what we have done to the case
where R is a ring of continuous functions. In this context, the Excision
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Theorem (1.5.9) gives the excision property for this cohomology theory.
We do not attempt here to cover any of the deep properties of topological
K-theory, the most fundamental of which is the Bott Periodicity Theo-
rem, but we at least give a quick introduction to the fundamentals. This
provides an interesting application of what we have done so far, as well
as a useful motivation for a number of results and constructions in future
chapters. The reader who wants to see more details can consult any of the
texts [Atiyah], [Husemoller] , or [Karoubi].

1.6.1. Definition. Let X be a topological space (in most of what we will
do, assumed to be compact Hausdorff) and let IF = Iw or Cc. A F-vector
bundle (in the weakest sense) consists of a topological space E and a
continuous open surjective  map p : E + X, with extra structure defined
by the following:

a>
b)

each fiber p-l(z)  of p, z E X, is a finite-dimensional vector space
over F;
there are continuous maps

Ex,E4E  a n d  FxE+E

which restrict to vector addition and scalar multiplication on each
fiber.

Such bundles E 3 X make up a category, in which the morphisms are
commutative diagrams

fE  - E’

P1 P' 1
X--- X

for which the map E f E’ is linear on each fiber.
For any X and any n E N, the category always includes the trivial F-

vector bundle of rank n, which is X x Fn -% X, where ~1 is projection
on the first factor and the vector bundle structure is the obvious one coming
from the vector space structure on the second factor.

The category has a binary operation called the Whitney sum, denoted

$. By definition, if E 5 X and E ’ L X are F-vector bundles over X,
their Whitney sum is defined by

E CB Eí = {(z, zí)  : z E E, xí E Eí, p(z) = p/(xí)},

with the obvious map to X.
For most purposes we want a more restrictive definition. A (locally

trivial) F-vector bundle is a F-vector bundle in the above sense with
the additional property that for each x E X, there is a neighborhood
U of x in X and an isomorphism (in the category of F-vector bundles)

from p-l(q p'p-y U to a trivial bundle of some rank over U. The
rank of such a bundle is then a continuous function X + N defined by
rank,(E) = dimp-l(x). If X is connected, the rank must be constant.
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1.6.2. Definition. If X is a compact Hausdorff space, let Vectp(X) de-
note the monoid  of isomorphism classes (in the category of IF-vector bun-
dles) of locally trivial F-vector bundles over X, with an addition opera-
tion induced by the Whitney sum. The O-element of this monoid  is the
trivial bundle of rank 0. The topological K-theory of X is defined
by K,(X) = G(Vectp(X)). Sometimes this is denoted simply K(X) or
KU(X) if F = C, KO(X) if F = Iw. (The ìU” ì0î stand respec-
tively for ìunitaryî and ìorthogonalî after the names of isometric linear
transformations.) We will often suppress mention of F when it is under-
stood from context. If X is connected, the reduced topological K-theory
is K:(X)  =  k e r  ( r a n k  

Kî(X)  is actually a contravariant functor from the category of compact
Hausdorff spaces (and continuous maps) to the category of abelian  groups.
This follows from the fact that vector bundles pull back under continuous

maps. If X f Y is continuous and E -% Y is a vector bundle over Y, we
define f*(Y) to be the fiber product

{(x, e) : x E X, e E E, f(x) = p(e)),

with the obvious map to X. The pull-back clearly induces a monoid  home
morphism f’ : Vectp(Y)  -+ Vectp(X) and thus a map Kí(Y)  -+ Kí(X).

Weíre now ready for the connection between vector bundles and projec-
tive modules that explains the connection between topological and alge-
braic K-theory.

1.6.3. Theorem [Swan2].  Let F = Iw or Cc, let X be a compact Hausdorff
space, and let R = C*(X) be the ring of continuous F-valued continuous
functions on X (with pointwise addition and multiplication). If E 5 X is
a (locally trivial) F-vector bundle over X, Jet

r(X, E) = {s : X -+ E continuous 1 p 0 s = idx}

be the set of continuous sections of p. Observe that this is naturally an R-
module. Then Ií(X,  E) is finitely generated and projective over R, and ev-
ery finitely generated projective module over R arises (up to isomorphism)
from this construction. The map E y-1 Ií(X,  E) induces an isomorphism of
categories from the category of (locally trivial) vector bundles over X to
the category of finitely generated projective R-modules. It also induces an
isomorphism Kí(X)  -+ Kc(R).

Proof. Let E 3 X be a (locally trivial) F-vector bundle over X and let
Ií(X,  E) be its R-module of sections. For each x E X, there is an open
neighborhood U over which E looks like a trivial bundle U x IF” for some
n. The n constant functions ej : U --t JRíî  determined by the standard
basis vectors of IF” clearly generate the sections of this trivial bundle as a
module over the continuous functions. Since X is compact, we can cover
X by finitely many such open sets Vi and choose a partition of unity (fi)
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subordinate to the covering. (Thus 0 5 _fi 5 1, fi is supported in Vi, and
Cfi E 1.) M It 1u ip ying the ej corresponding to Vi by fi, we get sections
eij supported in Ui which clearly extend to all of X by taking them = 0 off
Vi, and by construction, the eij generate Ií(X,  E) as an R-module. Hence
Ií(X,  E) is finitely generated.

Next we show that Ií(X,  E) is projective. Choose generators sj, 1 5
j 5 Ic, for l?(X, E) as an R-module. (These may or may not be the ones
we just constructed above.) Consider the trivial bundle X x Fk z X and
construct a morphism ëp  : X x IF” + E by

k

(z, w,... ,wk)  I--+ cWjSj(X).
j=l

Since the sj(z span p-ë(z)  for each 2, this vector bundle morphism is)
surjective on each fiber. Define a subbundle of the trivial bundle by Eí =
ker cp , i.e., by EL = ker cpz. This is also locally trivial since one can check
that it is trivial over any open set where E is trivial. We claim now that
E @I Eí g X x Fk, which will show that

ryx, E) 63 r-(x, E') E ryx, X x lFk)  2 Rî,

hence that r(X, E) is a projective module over R.
The easiest way to do this is by introducing hermitian metrics, i.e., inner

products. A hermitian metric on E is a continuous map

(, ):ExxE+F

which restricts to a positive-definite inner product on each fiber of E (bi-
linear if IF = R, sesquilinear if IF = Cc). Such metrics clearly exist since they
exist on trivial bundles (use the standard inner product on Fî)  and can
be patched together using a partition of unity. Therefore we may choose
such a metric on E and the metric on X x Fk coming from the standard
inner product on IFíì.  With respect to these metrics, cp has an adjoint  cp*
satisfying the usual relation

(VJ, 4 = (v, cp*4.

Since cp is surjective on each fiber, cp* will be injective  on each fiber, with
image the orthogonal complement of E = ker cp. So ëp*  gives an isomor-
phism of vector bundles from E to Eî,  showing that E 63 Eí 2 X x Fk,
as desired.

Now we have to show that every finitely generated projective module
over R corresponds to a vector bundle. Suppose P is such a module and
P@Q = R” s C(X, Fî). Then we may view P as a collection of functions
X --+ IF” and let

E = ((2,  ~1,.  . . , v,) E X x IFî : 3s E P with s(z) = (VI,.  . . , w,)}.
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Define p : E + X using projection onto the first factor. It is now quite
easy to see that E 5 X is a vector bundle. Vector addition and scalar
multiplication just come from vector addition and scalar multiplication in
Fn. (These operations map E into itself since P is an R-module.) We need
only check the local triviality. Given z E X, choose elements el,. . . , eT E P
such that el(z),  . . , er(z) are a basis for the subspace  E, = p-ë(z)  of Fî.

Recall these are vector-valued functions; write ei = (ei, . . . , ek).  Then
since e1(2),..., er (x) are linearly independent, we can choose 1 I jl <
. . . < j, < n such that

(1.6.4) e = det

is non-zero at x. We may choose similar elements fí,  . . . , f n--T E Q such
that f1 (x), . . . , fnpT(x)  are a basis for the image of Q in F” at x. (The
dimensions are complementary since P $ Q = R” ?Z C(X,  IFî).) From
the f” we may construct an (n - r) x (rz - r) determinant f, similar to
(1.6.4),  which is non-zero at x. Since e and f are continuous, there is
some neighborhood U of x in which both e # 0 and f # 0. For y E U,
eí(y),..., eí(y) are linearly independent and generate a rank-r free sub-
module of P. Similarly, f1 (y), . . . , fî-ë(y) are linearly independent and
generate a rank-(n - T) free submodule of Q. By dimension counting, these
must exhaust P and Q, so both P and Q are trivial over U. The statement
about an equivalence of categories is now easy to check. 0

Theorem 1.6.3 suggests that we should extend the definition of K” to
the category of locally compact spaces and proper maps (maps that
extend continuously to the one-point compactification) by letting Kî(Y)  =
Ko(C:(Y)),  hw ere C:(Y) is the ring of functions vanishing at infinity on
Y and we are using K-theory for rings without unit, as in Definition 1.5.7.
The resulting theory is called K-theory with compact supports. See
Exercise 1.6.14 below for a more geometric definition.

1.6.5. Proposition. If X is a compact Hausdorff space and A is a closed
subspace, there is (for F = either Cc or Iw) an exact sequence induced by
the inclusion A -+ X:

Kî(X  \ A) -+ Kí(X)  + Kí(A).

Proof. Let R = CF(X), and let I be the closed ideal of functions van-
ishing on A, which as a ring without unit is isomorphic to C,ì(X  \ A),
the functions vanishing at infinity on the locally compact space X \ A.
By the Tietze Extension Theorem, every continuous function on A is the
restriction of a continuous function on X, hence R/I may be identified
with CF(A), with the quotient map R + R/I identified with restriction
of functions. The result now follows immediately from Theorem 1.6.3 and
Theorem 1.5.9. 0
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Proposition 1.6.5 shows in effect that K” satisfies two of the Eilenberg-
Steenrod  axioms for a cohomology theory: exact sequences and excision. It
also satisfies the other key axiom, homotopy invariance, and we prove this
next by using special properties of Banach algebras. Recall that a Banach
algebra A is an algebra over R or Cc which also has the structure of a
Banach space, such that for any a, b E A, ljabll  < Ilallllbll.  The principal
examples for our purposes are A& (Cî (X)) , X a compact Hausdorff space,
or M,(C:(Y)),  Y a locally compact Hausdorff space. The latter does not
have a unit.

1.6.6. Lemma. Let A be a (real or complex) Banach algebra with unit
and let x E A with 111  - 211 < 1. Then for each a E R there is an element
xa in A with the usual properties (x1 = x, x0 = 1, xa . xp = xa+o).  In
particular, x is invertible in A.

Proof. Define x” by the usual binomial power series for (1 + (x - l))a.
The norm of the n-th  term in the series is bounded by the corresponding
term in the series for (l+lls-lll)a, which converges absolutely. Since A is a
Banach space, the series for xa therefore converges absolutely. The relation
$a . ,P -- xa+@  follows as usual from multiplication of the series. Cl

1.6.7. Lemma. Let A be a Banach algebra and let p, q be two idempo-
tents in A with ((p - q(I < 1. Then the projective A-modules Ap and Aq
are isomorphic.

Proof. Observe that pAp and qAq are Banach algebras with unit ele-
ments p and q, respectively. Since Ilp - pqpll  < 1 and IJq - qpqll < 1, x =
@qp)-i  makes sense in pAp and qpq is invertible in qAq, both by Lemma
1.6.6. Thus there is an x E pAp commuting with pqp with x2(pqp) = p and
of course with x = xp = px. Observe then that

(1.6.8) (4 (W) = XPqPx  = x2 (pqpp> = P,

that

(1.6.9) PC4 = ?I = (ed% c?(v)  = clx = (VIP>

and that

(1.6.10) (qx2d(4Pd  = QX2clPcl  = Qx2(PqP)q  = qpq.

The equation (1.6.10) says (qx) (xq) is a left unit for qpq in qAq. But since
qpq is invertible in qAq,  (qx)(xq) must be equal to the unit element of
qAq, which is q. The equations (1.6.8) and (1.6.9),  together with this fact,
imply that right multiplication by qx gives an isomorphism from Aq onto
Ap, whose inverse is right multiplication by xq (compare the calculation in
Lemma 1.2.1). Cl
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1.6.11. Corollary (Homotopy invariance of topological K-theo-
ry). Let A and B be Banach algebras and let vt : A + B, 0 5 t 5 1,
be a homotopy of homomorphisms from A to B. (This means exactly
that there is a homomorphism ëp  : A + C( [0, 11,  B) which when composed
with evaluation at t gives cpt.)  Then cpo and cp1 induce the same map on
K-theory Ko(A)  -+ &(B).

Proof. If necessary, adjoin units to A and B and extend vt to a homotopy
of unital  homomorphisms of unital algebras A+ -+ B+.  Since Ko(A)  -+
Ko(A+) and Ko(B) - Ko(B+),  this reduces us to the unital  case. For
simplicity, we therefore assume without loss of generality that A, B, and
the homomorphisms are unital.  For any p E Idem( p lies in M,(A) for
some n, so we may replace A and B by M,(A) and M,(B), respectively.
(These are still unital  Banach algebras, and pt extends naturally to M,(A)
just by application of the homomorphism to each matrix entry separately.)

Then q(p)  is a continuous path of idempotents in B. We may partition
the interval [0, l] into subintervals such that Ilqt(p)  - cps(p)ll  < 1 for t, s in
the same subinterval. By Lemma 1.6.7, the class of cpt(p)  remains constant
in each subinterval, hence remains constant in the whole interval. So cpo
and cp1 induce the same map Idem + Idem and hence the same
maponK0. q

1.6.12. Corollary. The functors X -+ VectF(X)  and X or)  Kî(X)  are
homotopy-invariant functors from the category of compact Hausdorff top&
logical spaces to the category of abelian monoids and the category of abelian
groups, respectively. In particular, if X is contractible, all vector bundles
over X are trivial, and PO(X)  = 0.

Proof. Specialize to the case of Banach algebras of the form M, ( CF (X)) .
Since homotopic idempotents are equivalent, we deduce that the map from
X to isomorphism classes of direct summands  in a trivial bundle of rank
n over X is a homotopy functor. The rest of the statements follow from
this. Cl

1.6.13. Example. Corollary 1.6.12 shows that the classification of vector
bundles, and hence the calculation of Kí(X),  are homotopy-theoretic in
nature. Consider for instance the case where X = 5íì.  This is a union of
two contractible hemispheres joined along the equator Sî-l.  (If n = 0, the
hemispheres are single points and the ìequatorî is the empty set.) Thus
any rank-r bundle over X is trivial over the hemispheres and determined
by the homotopy class of the ìgluing dataî along Y = P-l, which gives
an isomorphism between the two trivializations of the bundle coming from
the two hemispheres. Now an isomorphism between two trivial bundles
Y x F’ 3 Y is just given by a continuous map Y -+ GL(r, F). So
isomorphism classes of rank-r F-vector bundles over S” are in one-to-one
correspondence with homotopy classes of maps P-l ---f  GL(r, IF). Fur-
thermore, by polar decomposition, any matrix in GL(r,  F) can be written
uniquely in the form up, where u is unitary if F = Cc,  orthogonal if F = R,
and p is positive-definite self-adjoint. The positive-definite self-adjoint ma-
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trices  form a contractible space (since one can write any such matrix as
eh with h hermitian and use the contraction given by eth,  0 5 t 5 l), so
GL(r, Cc)  has a deformation retraction to U(T) and GL(r, R) has a defor-
mation retraction to O(T). Thus the isomorphism classes of rank-r IF-vector
bundles over S” are given by 7r,_i(U(r)) if IF = Cc, 7r,-1(0(r))  if IF = R.
The O-element of the homotopy group corresponds to the trivial bundle.

Now we can make some computations. O(r) always has two components
with identity component the rotation group SO(r), and U(T)  is connected.

Thus re(U(r)) = 0 and rre(O(r))  F Z/2, so %?ë(Sí)  = 0, Eí(Sí)  Z
Z/2. In low dimensions, one can check that O(1) = (1, -l}, SO(2) g S1,
SO(3) E lRP3,  SO(4) has S3 x S3 as a double cover, U(1) FZ Sí,  SU(2) cz
S3. Thus, for instance,

(

0, r = 1,

W(O(T)) = z, T = 2,

212, r 2 3,

so that Vectn(  S2) is the monoid  described in Exercise 1.1.7. One finds sim-
- 0

ilarly that rl(U(r))  = Z for all r, so that KU (S2) 2 Z. The calculations

of K?jî(Sn)  and of Eí(F) for all n follow from the Bott Periodicity The-
orem, which says that the answer only depends on the value of n mod 8
in the real case or the value of n mod 2 in the complex case. One obtains

0 ,  r$O,1,2,4 mod8,

Eí(F)  = Z, r=O,4 mod8,

212, rrl,2 mod8,

1.6.14. Exercise. Give another description of K-theory with compact
supports for a locally compact Hausdorff space Y in which Kí(Y)  is a set
of equivalence classes of triples (Ee, El, ëp),  where Es and Ei are (locally
trivial) vector bundles over Y and cp is a morphism of vector bundles Ee +
El which is an isomorphism outside of a compact set, and with relations

(b) [Eo, El, p] = [Eo, El, cpí] if cp = ëp’  outside of a compact set,

(cl [Eo, El, ëp]  = 0 if cp is an isomorphism.

Impose the necessary equivalence relation to get an isomorphism with our
old description of Kî.  Hint: when Y is actually compact, condition (b)
says that one can forget the cp altogether. In this case, the isomorphism of
this description of K” with the usual one is given by

[Eo, El, ëPI  ,-+ PO] - PII.
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1.6.15. Exercise. Show that if one defines K-j(X) = Kî(X  x ll@) (using
K-theory with compact supports) that the short exact sequence of Propo-
sition 1.6.5 can be extended to a long exact sequence

. . . --f K-j(X \ A) --+ K-j(X) + K+(A) + K-j+ë(X  \ A) -i . . . .

Hint: the problem is construct the boundary map KO(AxR) + KO(X\A).
This can be done by letting Y be the space (A x (0, 11) U X, with (a, 1)
identified with a E X for a E A. (Y is the ìopen mapping coneî of the
inclusion A L) X.) One gets from Proposition 1.6.5 exact sequences

Kî(A x (0, 1)) -+ Kí(Y)  + Kí(X)

and
Kî(X  \ A) + Kí(Y)  + Kî(A  x (0, 11).

Show using homotopy-invariance and excision that Kî(A  x (0, 11)  vanishes
and that Kî(X \ A) + Kî(Y)  is an isomorphism. Then splice these exact
sequences together with the sequence

Kî(X  \ A) -+ Kí(X) + Kí(A).

1.6.16. Exercise (The Karoubi Density Theorem [Karoubi, 11.6.
151).  Let A and A be (unital)  Banach algebras over Cc, and let L : A + A
be a continuous injection of A into A as a dense subalgebra. Extend L

to matrices in the usual way, by applying it to each entry of the matrix.
Assume that for all n, if z E M,(d) an L z is invertible in M,(A),  thend ( )
z is invertible in M,(d).

(1)

(2)

Show that L induces an isomorphism Ko(d) + Ko(A).  Hint for
the surjectivity:  if e is an idempotent in h&(A),  then e can be
approximated in the topology of A by an element z of M,(d).
Show that the spectrum of x in M,(d)  coincides with its spectrum
in M,(A),  and thus that x has spectrum close to (0, 1). Deduce
that the Banach subalgebra of M,(d) generated by x contains an
idempotent f with I 1c ose to e, by justifying the definition

f=& y&JJ
where I is a contour in the complex plane encircling the part of the
spectrum of x close to 1, and excluding the part of the spectrum
of x close to 0. Then use Lemma 1.6.7.
Show that the two hypotheses are satisfied if A is the algebra of
continuous complex-valued functions on a compact subset X of
R” (equipped with the sup norm I] I]),  and if A is the algebra
of continuously differentiable functions on X, equipped with the
norm

Ilf IId = Ilf II + llvf 11.
Deduce that ìevery vector bundle over X has a differentiable struc-
ture.”
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7. Anot her application: Euler characteristics
and the Wall finiteness obstruction

In this final section of Chapter 1, we discuss the algebraic background of
most of those applications of Ke to topology that do not involve topological
K-theory. While what we will be doing here is pure algebra, it is worth
saying a bit about the topological motivation to explain what is going on.
If X is a path-connected, locally l-connected topological space with fun-
damental group G and R = ZG, we can manufacture from X its singular
chain complex with local coefficients S.(X). This is a chain complex
of free R-modules which is the same thing as the usual singular chain com-
plex of the universal cover X of X, together with the R-module structure
coming from the action of G on X by covering transformations. Further-
more, the chain homotopy equivalence class of the chain complex S.(X)
only depends on the homotopy equivalence class of the space X. The chain
complex S.(X) is quite large in general; for most spaces of interest, the
R-modules in it are not even countably generated. However, if X is a finite
CW-complex, then S.(X) is chain homotopy equivalent to the cellular
chain complex with local coefficients C.(X), a chain complex of free
R-modules with only finitely many non-zero chain groups and with each of
these chain groups finitely generated. Thus an obvious necessary condition
for a space X to be homotopy-equivalent to a finite CW-complex is for
S.(X) to be chain-homotopy-equivalent to a finitely generated complex of
free R-modules.

Under some circumstances, it is easy to check not this condition but
something weaker, called finite domination. The space X is finitely dom-
inated if up to homotopy it is a retract of a finite CW-complex; in other
words, if there is a finite CW-complex Y and there are maps f : X --+ Y,
g : Y + X with g o f Y idx. An important question is then whether
this implies that X is homotopy-equivalent to some (other) finite CW-
complex. (It is not hard to show that X is homotopy-equivalent to some
CW-complex (see [Varadarajan,  Theorem 3.91 or [Spanier, Ch. 7, Exercise
G6]),  but this complex is not necessarily finite.) This question was an-
swered by C. T. C. Wall in an important series of papers. Wall showed
that if X is finitely dominated, then S.(X) is chain-homotopy-equivalent
to a finitely generated complex of projective R-modules. The Wall finite-
ness obstruction of X is then the ìEuler characteristicî of this complex
in the group l&,(R). Though we will not show here that vanishing of the
obstruction is sufficient for finiteness (for this see [Wall] or [Varadarajan]),
it will be clear that it is necessary. The Wall obstruction occurs in many
problems in geometric topology, such as the question studied by Sieben-
mann of when a non-compact manifold is homeomorphic  to the interior of
a compact manifold with boundary. For this and other geometric problems
related to the Wall obstruction, see [Weinberger, Ch. 1, 31 and 941.

We shall now provide an abstract treatment of the Wall finiteness ob-
struction for chain complexes of R-modules, as an outgrowth of the classical
theory of the Euler-Poincare characteristic for topological spaces. Since we
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donít assume the reader is very familiar with homological algebra, we be-
gin with a review of some classical notions and facts. The reader who has
had a course in homological algebra or homology theory can probably skip
ahead to 1.7.9 after reviewing the statements of Theorems 1.7.4 and 1.7.7.

1.7.1. Definition. Let R be a ring (with unit). A chain complex of
R-modules is a pair (C., d), where C. is a Z-graded R-module and d is an
R-module homomorphism C --f C of degree -1 such that d2 = 0. (In other
words, d is defined by maps d, : C, ---f  C,_, such that d,_l  o d, = 0.)
Recall that the homology of such a chain complex is H(C) = ker d/ im d;
more precisely, H, = ker d,/ im d,+l.  Elements of ker d are called cycles
and elements of imd are called boundaries. The chain complex is called
acyclic if H(C) = 0, i.e., if the sequence

is exact.

&+I 6-l. . . - G 5 C,_l - . . .

1.7.2. Definition. If (C., d), (CA, dí) are chain complexes of R-modules,
a chain map between them is an R-module homomorphism cp : C -t C’
of degree 0 intertwining d and dí,  i.e., is given by maps (P* : C, + Ck such
that dk o pn = pn_l o d,. It is immediate that such a cp induces maps on
homology cpt : H,,(C) --+ H, (Cl). If ëp : C -+ C’ and 7c, : C --) C’ axe chain
maps, a chain homotopy between them is an R-module homomorphism
s : C --) C’ of degree +l such that

(1.7.3) sod+díos=cp-$.

Chain homotopy is an equivalence relation on chain maps. We write ëp  N_ 1c,
if there is a chain homotopy between them. A chain homotopy from idc
to 0 is called a chain contraction, and if such a homotopy exists, C. is
called chain-contractible.

Note that (1.7.3) ’ pllm ies that ëp* = & on homology. Indeed if dx = 0,
then

cp(z)  - +(z)  = s o d(z) + dí o s(z) = dí(s(z)),

so that p(x) and $(z) lie in the same homology class. Thus if a chain
complex is chain-contractible, it is acyclic. The converse is false without
additional conditions.

If there exist chain maps cp : C ---f  C’ and I/J : Cí + C such that
$0 cp N idc and cpo+ N idcl , then we say C and C’ are chain-homotopy-
equivalent. This of course implies by our previous remark that cp* is an
isomorphism on homology with inverse $J*.

1.7.4. Proposition. If (C., d) is an acyclic chain complex of projective
R-modules and C. is bounded below, i.e., Cj = 0 for j sufficiently small,
then C, is chain-contractible.

Proof Without loss of generality assume Cj = 0 for j < 0. (Otherwise
reindex.) We construct a contraction s, : C, -+ C,+l by induction on n
to satisfy the needed condition

(*n) s,_l o d, + d,+l o s, = idc,.
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At the same time, we also show by induction that kerd,  is a direct sum-
mand in C,. To begin the induction, set sj = 0 for j < 0 and note that
by the assumptions that Ho(C) = 0 and C-i = 0, dl : Ci + Cc must be
surjective. Since Cc is projective, dl must have a right inverse SO, so (*e)
holds. Furthermore, im dl = ker do = CO is projective.

For the inductive step, assume weíve constructed sj for j < n to satisfy
(*j) and we know ker dj = imdj+i is a direct summand in Cj for j < n,
hence projective by Theorem 1.1.2. We shall construct s, to satisfy (*n).
By inductive assumption, C,_i = (im d,)@Q,_l  for some projective Q+i.
On imd, = kerd,_i,  s,_2 0 d,_l = 0, so d, o s,_l is the identity. Thus,
by (*+I),  s,-1 is a right inverse for

d, : C, + imd, C: C,_i.

Therefore s,_i o d, is an idempotent endomorphism of C, with image Qn
complementary to ker d,, and ker d, = im d,+l is R-projective. Since

dn+l .. G,l + imd,+i  = ker d,

is surjective, it has a right inverse s,. Extend s, to all of C, by making
it 0 on Qn. Then (*n) is satisfied and weíve completed the inductive step.
The Proposition now follows by induction. 0

1.7.5. Definition. Suppose ëp  : (C., d) + (CL, dí) is a chain map between
chain complexes of R-modules. Its mapping cone is (C:l, dî), where
Cf = C,_i @ Ci (note the degree shift in the first summand!) and

d;(c, cí)  = (-d+lc, v(c) + d;(cí)).

This is a chain complex since

d;_l o d;(c, cí) = (dj-2 o d+lc,  cp(-dj-lc) + d[i_l (v(c) + d;(cí)))

= (0, -cp o dj-l(c)  + d;_l 0 v(c) + 0) = (0, 0).

1.7.6. Theorem (Fundamental Theorem of Homological Alge-
bra). Suppose

0 --t (CL,  dí) 5 (C., d) 2 (C:ë,  dî) + 0

is a short exact sequence of chain complexes. (This means a and /3 are
chain maps and the sequence of R-modules

is exact for each j.) Then there is an induced long exact sequence of
homology modules

--dzj(cí)  =Hj(c) % Hj(Cî)  3 Hj-l(Cí)  + . . . .
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Proof. This is the quintessential LLdiagram chase.î First we go through
the definition of Hj(Cî) 2 Hj-l(Cí);  then we go through the proof of
exactness. Let [xî]  be a class in Hj(Cî)  represented by x” E Cy with
dîx”  = 0. Since p is surjective, xî = P(x) with x E Cj. Since dîo/3(x)  = 0
and p is a chain map, ,0 o d(x) = 0, i.e., d(x) E kerp = imcu. Hence
d(x) = a(~ë)  for some xí E Cj_1. We claim dí(xí) = 0, so that xí is a
ìcycle,” i.e., represents a class in Hj-1 (Cí). Indeed, since (Y is a chain
map, cr: o d/(xí)  = do ëX(Xí)  = d2(x)  = 0. But a was injective,  so d/(xí)  = 0.
Now let a[~ì]  = [&I. We 1eave to the reader the simple argument that
shows this is independent of the choice of x” within its homology class and
independent of the choice of the lift x of 2î.

We proceed now to the proof of exactness. The construction of a[~ì]
above gives cr*(a[xî])  = [a(~ë)]  = [0], and also shows that if [xî] = p*[x]
for some [x] E Hj(C),  then a[~ì]  = 0 (since d(x) = 0). Also, /% 0 Q* = 0
since 0 o (Y = 0. So the image of each map in our sequence is contained in
the kernel of the next one.

For the reverse containments,  suppose for instance that x E Cj, d(x) = 0,
and fl*[x]  = 0 in Hj(Cî).  Then P(x) = dî(yî)  for some 9” E Cy+i.
Since /I is surjective, we may choose y E Cj+i with p(y) = yî.  Since
dîo&)  = Pod(y) = P(x , x-d(y) E kerp = ima, and [x] E imo,. Thus)
ker/3* C imcr,.

Next,  suppose x E C$ë,  dî(x) = 0, and a[~ì] = 0 in Hj_l(Cí).  By
the description of d above, this means xî = p(x) with d(x) = cr(xí)  and
x’ = dí(yí),  y í  E Ci. Then d o a(~ë)  = (Y o dí(yí)  = cr(xí)  =  d(x) ,  so
x - (I E kerd. Since also P(x - cr(yí))  = P(x) = xî,  this shows [xî]  =
,&[x - cr(yí)].  Hence kera c imp*.

Finally, suppose Xí E Cj-1, dí(xí) = 0, and CX*[Xí]  = 0 in Hj_l(C).  Then
CX(Zí)  = d(x) for some 2 E Cj. Let x” = P(x). Then d//(xî)  = P 0 d(x) =
Doa = 0, so xî defines a class [zEî]  in Hj(Cî).  From the description of
d, a[~ì]  = [xí],  so ker (Y*  C: im a. This completes the proof of exactness. 0

1.7.7. Theorem. A chain map between chain complexes of R-modules is
a chain homotopy equivalence if and only if its mapping cone is contractible.
If the complexes are b e l o w  a n d  o f  R - m o d u l e s ,
then it is a homotopy equivalence if and only if the mapping cone is acyclic,

L e t  cp (C., --+  dí )  be a chain map and let (Ct , dî) be its
mapping cone. First observe that there is a short exact sequence of chain
complexes

0 + (CL, dí)  --f (C:, dî)  + (C.-l, -d) + 0.

The maps here are the obvious ones: we map C; to Cy = Cj_i  @ C(i by
cí H (0, cí), and we project Cy onto the first summand Cj-1. The fact that
these maps commute with the boundary maps is obvious from Definition
1.7.5. Since changing the sign of d doesnít change the homology of C, we
obtain from Theorem 1.7.6 an exact sequence

(1.7.8) ... -+ HJCî)  4 H,_l(C) 5 H,_l(Cí)  + H,_l(Cî)  + ... .
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Here it is easy to check from the definition of d that the map H,_I(C) ---)
Hn_l(Cí)  is just cp+. Thus cp*
alent to the mapping cone 19” b e i n g  a c y c l i c .  F u r t h e r m o r e ,  i f  C  a n d  C í  a r e
bounded below and consist of projective modules, then the same is true of
Cî.  Hence, by Proposition 1.7.4, the mapping cone in this case is acyclic
if and only if it is contractible.

It remains to show that cp is a homotopy equivalence if and only if C”
is contractible. Suppose s” : C” --+ C” is a chain contraction. Then we
define s : C 4 C, s’ : C’ + Cí,  and 1c, : C’ --) C b y

sî(C,  0) = (s(c), *. .),

sî(0,  cí)  = ($!l(cí),  -sí(d)).

Since dîs”  + sîd”  = idp, we have

(c, 0) = (-do s(c), se.) + sî(-dc, p(c))

= (-do s(c) + + o v(c) - s o d(c), . . .) ,

(0, cí) = dî($(cí),  -sí(c)))  + ~ì(0,  dí(cí))

= (-do $(cí),  cp o $(cí)  - dí o sí(cí))  + ($ o dí(d),  -s’ o d'(c'))  ,

which says

(

- do $(cí)  + 11, o dí(cí) = 0 Vc’ ($I is a chain map);

c=-dos(c)++ocp(c)- s o d ( c )  Vc ($opc~ìidc);
S

c’ = cp o $(cí)  - dí o sí(cí)  - s’ o dí(cí)  Vc’ (ëp  o $ 5 idct).

In the other direction, suppose cp is a homotopy equivalence with homo-
topy inverse $J, and suppose one has homotopies s from $J 0 ëp  to idc and
sí from cp o $ to idcj. Let

sî(C,  cí) = (s(c) + $(cí)  + $0 s’ 0 cp(c)ll, 0 cp 0 s(c),

-sí(cí) + sí 0 $9 0 s(c) - (sí)2  0 cp(c))  .

We will check that one obtains a chain contraction of Cî. Note that

(dîs”  + sîdî)(c,  cí) = d” (s(c) + T+!J(cí)  + II, o s’ o p(c) - $0 ëP  o s(c),

-sí(cí)  + sí 0 p o s(c) - (s/)2 o p(c))

+ s” (-d(c), p(c) + dí(d))

= (-do s(c) - do $(cí)  - do v+b o sí o p(c)

+ do $ o cp o s(c), p o s(c) + cp o I@ë)

+ $0 o $ o sí o p(c) - cp o 1c, o ëp  o s(c)

-d’ o sí(cí)  + dí o sí o cp o s(c) - dí o (sí)~  o v(c))

+ (-s o d(c) + $J o p(c)  + $0 dí(cí)

+ $J o sí o 4-d(c))  + 1c, o ëp  o s(d(c)),

- sí o v(c) - sí o dí(cí)

+s’ o cp o s(-d(c)) - (sí)~  o p(-d(c)))  .
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The first coordinate (after some regrouping) is

= [-d  0 s(c) - s 0 d(c)] +  $(cí) + $J 0 dí(cí)l
+[-doIjlosíocp(c)-II,osíocpod(c)]

+ [d  0 7+h  0 cp  0 s(c) + 1c, 0 cp 0 s O 441  + + O cp(4
= - (dos+sod)(c) + (11,ocposod+~ooodoss)(c)

- 6 o (dí o sí + sí o dí) o p(c) + + o v(c)

= c + 1c, o cp o ($ o cp - idc)(c)

- $ o (cp o 1cI - idcí)  o ~(4
= c.

The second coordinate (after some regrouping) is

= 19  o $(cí)  - dí o sí(cí)  - sí o dí(cí)]

+ [p o  s ( c )  +  dí  o  s í  o cp o s ( c )  - p o 11, o cp o  s ( c ) ]

í o v(c) - í o (sí)’  o v(c) cp o  $ í o p(c)]

- sí cp o s o d(c) + í)~ cp o

c’ (idct  - cp o  + í o sí) o cp

+ (ëp  o $I - idc, - dí o sí) í o v(c)

- í o cp (sí)~  o cp o d(c)

= cí - sí o d’ o cp o s(c)

+ s’ o d’ o s’ o p(c)

- sí o cp o s o d(c) + (sí)~  o cp o d(c)

=cí-síocpo(dos+sod)(c)

+ sí o (dí o s’ + sí o dí) o p(c)

= cí - sí o cp o (T+!J  o cp - idc)(c)

+ sí o (ëp  o 1c, - idct)  o v(c)
I=c.

This confirms that s” is a chain contraction of Cî. 0

Now weíre ready to introduce the connection with Ko(R).

1.7.9. Definition. A chain complex (C., d) of R-modules is called bound-
ed if the modules Cj are non-zero for only finitely many j, and is called of
finite type if it is bounded and all the Cj are finitely generated. (The
connection with topology is that the cellular chain complex of a finite
CW-complex is of finite type, and the cellular chain complex of a finite-
dimensional CW-complex is bounded (with non-zero chain groups only in
the dimensions of the cells of the complex) .)
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If (C., d) is a chain complex of finite type of projective R-modules, we
define its Euler characteristic by

x(C)  = 2 (-l)j[Cj]  ( in Kc(R)) .
j=-_oo

Note that this is really a finite sum, and that d is not used in the definition
of x(C).  Also define g(C)  to be the image of x(C)  in kc(R).

1.7.10. Proposition (ìEuler-PoincarB  Principleî). The Euler
characteristic is additive on short exact sequences of complexes of finite
type. In other words, if

is a short exact sequence of chain complexes of finite type of projective
R-modules, then x(Cî)  = x(Cí)  +x(C). tithermore, if (CL, d) is a chain
complex of finite type of projective R-modules, and if all its homology
modules are projective, then

Proof. Since any short exact sequence of projective modules splits, if

is a short exact sequence of chain complexes of finite type of projective
R-modules, then Cy G+ Ci @ Cj, hence [CT] = [C$] + [Cj] and the formula
x(Cî)  = x(e) + x(C) follows upon taking the alternating sum over j.

Next, suppose (C., d) is a chain complex of finite type of projective
R-modules and all the homology modules Hj(C) are R-projective. Let
Zj = ker(dj  : Cj + Cj-I),  Bj = im(dj+r  : Cj+r  -+ Cj). We have short
exact sequences

(*) 0 + Zj+l  --) Cj+l -+Bj +O,

(**I 0 * Bj + Zj + Hj + 0.

Since Hj is assumed projective, (**) splits, and Zj E Bj @ Hj. Since the
complex is assumed to be of finite type, we may assume (after reindexing)
that Cj = 0 for j < 0, in which case Cc = Zc is projective; hence, since

Zs G! B0 @ HO,  BO is projective. Thus Ci 3 BO must split and so
Ci % BO @I Z1. This implies 21 is projective, and since Zi g BI @ HI,
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Bi is projective. Continuing by induction, all the Bj and Zj are projective
and all of the above short exact sequences split. Thus we obtain

[zj+iI  + [Rj]  = [Cj+i] (from (*)),

[Bj] + [Hj] = [Zj] (from (**)).

Substituting in the definition of x(C), we obtain

x(C) = g (-VPjl
j=-cc

= 2 (-l>j([Zj]  + [Bj-I])
j=-00

= 2 (-l>j([f$]  + [Bj] + [Bj-11)
j=-00

= 2 (-l)j[Hj]  +  2 (-l)j[Bj]  2 (-l)j[Bj]
j=-m j=-00 j=-m

= 5 (-l)j[Hj]. Cl
j=-m

1.7.11. Corollary. The Euler characteristic is well defined on chain
complexes of projective R-modules which are homotopy-equivalent to com-
plexes of finite type of projective R-modules, and is constant on homotopy
equivalence classes. It is also additive on short exact sequences of such
chain complexes.

Proof. Suppose (C., d) is a chain complex of projective R-modules which
is homotopy-equivalent to a chain complex of finite type (C,l, dl) of pro-
jective R-modules. We define x(C) = x(Cí).  Of course, to know that
this makes sense, we need to check that it is independent of the choice
of  Cl. If (C.2, d2) is another possible choice, then C1 and C2 are each
homotopy-equivalent to C, hence are homotopy-equivalent to each other.
Let ëp  : Cl + C2 be a homotopy equivalence between them and let C3
be its mapping cone. Since Cl and C2 are of finite type and consist of
projective R-modules, the same is true of C3. Furthermore, from the short
exact sequence

0 -4 (C.ì)  --+ (C.ì)  --$ (Ci_,) -+ 0

and Proposition 1.7.10, we obtain that

x(C3>  = xvî>  - xví>.

But C3 is acyclic by Theorem 1.7.7, so its homology modules are 0 and
hence x(C3) = 0 by Proposition 1.7.10 again. Thus x(Cí)  = x(C2),
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as required. The same calculation shows that homotopy-equivalent chain
complexes have the same Euler characteristic. Finally, additivity on short
exact sequences also follows immediately from Proposition 1.7.10 and the
fact that short exact sequences of projective modules must split. 0

Weíre now finally ready for Wallís theorem.

1.7.12. Theorem [Wall]. Let (C., d) be a chain complex of projective
R-modules which is homotopy-equivalent to a chain complex of finite type
of projective R-modules. Then (C., d) is homotopy-equivalent to a chain
complex of finite type of free R-modules if and only if g(C) = 0 in I&(R).

Proof. Suppose (C., d) is homotopy-equivalent to (CL,  dí) of finite type,
with both complexes consisting of projective modules. By Corollary 1.7.11,
x(C) = x(Cí); hence  X(C)  = g(Cí).  If C’ consists of finitely generated free
modules, then clearly g(Cí)  = 0 so g(C)  = 0.

On the other hand, suppose g(Cí)  = 0. It will be enough to show C’
is homotopy-equivalent to a complex of finite type consisting of free R-
modules. Suppose Ci = 0 for j outside of an interval {k, k + 1,. . . , k +
n}. Choose projective modules Qn, . . . , QO such that C(e+n @ Qn is free,
C’k+7L_-1  $ Qn $ Qn_l is free, and in general such that CL+j @ Qj+l@ Qj is
free for 0 5 j < n. If (T., dT is chain-contractible, then replacing (CL,  dí))

by (CL, dí) @I (T., 8) doesnít change its homotopy class. So let (Ti, 8í)
be defined by

Ti” =
{

0 ,  i # k + j , k + j - 1 ,
Qj, i=k+j,k+j-1,

with <ij : Qj -+ Qj the identity map. This is clearly contractible, so now

(C:, dî) = (CL, dí) @ @(Tj,  d*ë)
j=O

is homotopy-equivalent to (CL,  dí) and has free modules in all degrees ex-
cept k - 1. Thus

0 = X(Cí)  = J?(Cî)  = (-l)ì[C{_,] (in &(R)),

so c;_, is stably free. Choose a finitely generated free R-module F such
that Ci_, @ F E F. Let (T,, dT)  be defined by

T. = 0, J’  # k- 1, k - 2 ,
3 F, j=k-l,k-2,

with c_, : F -+ F the identity map. This is clearly contractible, and
(C:, dî)  63 (T., 8í) now has free modules in all degrees. So (C., d) is
homotopy-equivalent to a chain complex of finite type of free R-mod-
ules. 0

When R is Noetherian, we can also relate finite generation of a chain
complex C to finite generation of its homology, as shown in the following
theorem.
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1.7.13. Theorem. Let R be a (left) Noetherian ring. If (c., d) is a
bounded chain complex of projective R-modules, then Hj(C) is finitely
generated over R for all j if and only if C is homotopy-equivalent to a com-
plex of finite type of projective R-modules. In particular, if the homology
modules of C are finitely generated, its Euler characteristic is well defined.

Proof. One direction is easy. If C is homotopy-equivalent to a complex
of finite type, then its homology is the same as that of a complex of finite
type, so we might as well assume C is already of finite type. If R is
Noetherian and Cj is finitely generated, then its submodule Zj = kerdj
must also be finitely generated, hence Hj (C), which is a quotient of Zj, is
finitely generated. Thus all homology modules are finitely generated.

For the converse, without loss of generality, assume Cj = 0 for j < 0
and for J’ > n. We first construct by induction on m, starting at 0 and
continuing up to m = n, a complex of finite type (C$,  dí)j<m of free R-
modules and a chain map

p : (C:, dí)  4 (C., 4

which induces isomorphisms on homology through degree m - 1. Of course
we take (2í;  = 0 for j < 0 and for j > n. To begin the induction, note
that since Cj-1 = 0, Ho(C) = Co/ imdl. Choose a finite set of generators
MY..., [zcT] for Ho(C) and representatives ~1,. . . ,z, E Co. Let CA be the
free R-module on generators ~1, . . . , y,. and let cp~(yk)  = zk. Since R is
assumed Noetherian, the kernel BI, of the composite map

c:, = Co -+ Ho(C),

being a submodule of the finitely generated module CA,  is also finitely gen-
erated. Choose generators 21, . . . , zt for Bh and let C{ be free on generators

wt. Define dí,  so that di (wk) = zk. Then C: 3 CA is a chain com-
;:; wfth  Ho(Cí)  = CA/B’o and cpo induces an isomorphism on HO. Since
we want cpo to be the O-degree part of a chain map, we need to define cp1
so that

G ëp1  Cl

d: 1 dl 1
c:, 1po co

commutes. Since ëpO(zk)  goes to 0 in Ho(C), we can choose ëIlk  E Cl, with
dl(uk)  = (PO(&). so we let pl(wk) = uk and the condition is satisfied.
This completes the first step in the induction.

For the inductive step, assume weíve constructed a complex of finite type
of free R-modules (Ci, dj) for j 5 m and a chain map cp : C’ + C which
is an isomorphism on homology in degrees < m. Continuing as before,
choose generators [xl], . . . , [x,] for H,(C) and representatives x1, . . . , x,. E
zn c Gn. Replace the old Ck by its direct sum with the free R-module
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on generators yi, . . . , yr and let (~~(ylc)  = xk. We keep qrn the same on the
old CL. Similarly, we do not change d&,  on the old C& and let dk(yk) = 0.
Then we still have a chain complex and a chain map for j 5 m but now
cp*  is surjective on H,. As before, we choose CL,, finitely generated and
free with d,+l : CL,, + C, mapping onto the kernel of the composite

and define vrn+i as above so that we have a chain map which now is an
isomorphism in homology through degree m. We continue by induction
until weíve constructed a complex of finite type of free R-modules and a
chain map cp : Cí + C which is an isomorphism on homology in degrees
< n and a surjection  in homology in degree n. Of course, since everything
is zero in degrees > n, cp* is actually an isomorphism on homology in all
degrees except n.

Now consider the mapping cone (Ct , dî)  of cp. This is a bounded com-
plex of projective R-modules with non-zero chain modules only in degrees
0 through n + 1. By the exact sequence (1.7.8) (in our situation C and
C’ are reversed), C” has only one non-zero homology module, in degree
n + 1. Repeating the proof of Proposition 1.7.4, we can construct a chain
contraction of C” through degree n, which shows that dE+, : CE+l  + B” is
split surjective and thus that Hn+l(Cî)  = ZE+l = ker dE+,  is R-project&e
and a direct summand in Ci+i Z CL. Hence we may replace CA by a pro-
jective complement to H,+l(Cî)  and thereby make Cí a complex of finite
type of projective R-modules and cp* an isomorphism on homology, hence
a chain-homotopy equivalence, by Theorem 1.7.7. 0

Remark. This proof demonstrates clearly the origin of Wallís obstruc-
tion. At the last step of our induction, we can either make cp* into a
homology isomorphism in degree n at the expense of making C, a possibly
non-free projective module, or we can make Ck free and ëp*  an epimorphism
on homolow in degree n, but in general we canít take C,, free and at the
same time make ëp  a homotopy equivalence.

Now for some topological applications. Wallís work on finiteness ob-
structions for chain complexes arose from the question of when a connected
space X is homotopy-equivalent to a finite CW-complex. If Y is a finite
connected CW-complex, Y is locally simply connected (so that covering
space theory applies) and has a finitely presented fundamental group r.
(The fundamental group of the l-skeleton of Y is a finitely generated free
group surjecting  onto 7r, and rr is obtained from this free group by adding
in one relation for each 2-cell.) Thus we may form the universal covering Y
of Y, which carries a free cellular action of 7r. The cellular chain complex
of Y, while not of finite type over Z, may be viewed as a chain complex
of finite type of free R-modules, where R = %, the integral group ring of
T. Alternatively, we may think of this complex as the chain complex of Y
with local coefficients. Thus if X is a space which is homotopy-equivalent
to Y, it must also have fundamental group rr (finitely presented), and its
singular chain complex with local coefficients S.(X), which is a complex of
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free R-modules but is very far from being of finite type in general, must be
chain-homotopy-equivalent to a complex of finite type of free R-modules.

Theorem 1.7.12 now gives a necessary and sufficient condition for S.(X)
to have this property. Call S.(X) finitely dominated if it is chain-
homotopy-equivalent to a complex of finite type of projective R-modules.
Theorem 1.7.12 says that a finitely dominated complex has a well-defined
finiteness obstruction in &(R),  and is chain-homotopy-equivalent to a
complex of finite type of free R-modules if and only if this finiteness ob-
struction vanishes. If R = 221~  happens to be Noetherian, which is not the
case for all finitely presented groups 7r, but is true say if 7r is a product of
a finite group and a free abelian  group (the group ring of a finite group is
finitely generated as a Z-module, hence Noetherian, and the group ring of
7r x Zn is a Laurent polynomial ring in n variables over the group ring of
7r), one can apply Theorem 1.7.13 to see that an R-module chain complex
C is finitely dominated if and only if it is homologically finite-dimensional
and its homology groups are finitely generated.

Wall actually went further than this; he showed that a connected space X
with finitely presented fundamental group and the homotopy type of a CW-
complex is finitely dominated if and only if S.(X) is finitely dominated,
and has the homotopy type of a finite CW-complex if and only if S.(X) is
finitely dominated and has vanishing finiteness obstruction. The method
of proof for the ìifî directions is to inductively construct a sequence Y,
(n 2 1) of finite CW- complexes by attaching cells, along with maps Y,, -+ X
which are dominations (resp., homotopy equivalences) ìthrough dimension
n - 1.” The proof of Theorem 1.7.13 is an abstract version of this technique,
in the case where R is Noetherian. In proving homotopy finiteness, the
finiteness obstruction is precisely the obstruction to having this inductive
process terminate after a finite number of steps.

1.7.14. Example. Let us illustrate a geometric application of Theorems
1.7.12 and 1.7.13. Suppose X” is a connected non-compact (topological
or smooth) manifold and one wants to know whether X is homeomorphic
to the interior of a manifold W” with boundary. Precise necessary and
sufficient conditions were found by Siebenmann (provided one stays away
from the problem dimensions 3 and 4 by assuming n < 2 or n 2 6) us-
ing surgery theory, but we have done enough now to at least give some
interesting necessary conditions.

If W” exists, then it must have the homotopy type of a finite CW-
complex, hence so must X, since the inclusion of X into W is a homotopy-
equivalence. Furthermore, for each component Nî-l  of aW, N must have
a ìcollarî neighborhood in W homeomorphic to N x [0, l), so the corre-
sponding ìendî of X = W \ dW must be homeomorphic to N x (0, l),
and in particular must be homotopy-equivalent to the compact manifold N.
(For a locally compact Hausdorff space X, a neighborhood of infinity
may be defined to be the complement of a compact set. An end may be
defined to be a connected component of PX \ X, where fix is the Stone-
tech or maximal compactification of X (the space of maximal ideals of the
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algebra of bounded continuous real-valued functions on X). Equivalently,
an end is an equivalence class of components of neighborhoods of infinity.
In the present situation, the ends must be in one-to-one correspondence
with the components of 8W.) So the homotopy type of N is determined
by that of the corresponding neighborhoods of the associated end of X.

In particular, we now derive a number of necessary conditions for our
being able to complete X to a compact manifold with boundary. X must
have finitely many ends, and for each end E of X, if Xi is a sequence of
connected open neighborhoods of E with Xi \ E, the fundamental groups
of the Xi must stabilize to some finitely presented group nl(E) (in the
sense of the Mittag-Leffler condition, that l@ rr(Xi) = rl(E),  and for
each i, the images in ri(Xi) of the ri(Xj),  j 2 i, eventually stabilize). Let
R = Zrl(E). Then we obtain an inverse system (H.(Xi;  R)) of homology
groups with local coefficients in R which must also stabilize to what will
correspond to H.(N;  R). Thus for a suitable open connected neighbor-
hood U of E, ~1 (U) = ~1 (E) and H. (U; R) looks like the homology of a
compact manifold of dimension n - 1. If for instance xl(E)  is finite (this
is not so essential but it already covers an interesting case), R is Noether-
ian and the homology must be finitely generated by Theorem 1.7.13. By
the same Theorem, the cellular chain complex of U with coefficients in R
is homotopy-equivalent to a complex of projective modules of finite type.
Thus the obstruction g(C.(U;  R)) is defined and must vanish in l&(R).
Siebenmannís Theorem says that once this is satisfied, one can put a bound-
ary on the end E provided at least that n # 3, 4, or 5. See [Weinberger,
$5 1.5 and 1.61 for a further explanation. The homeomorphism class of
the boundary to be added is not always uniquely determined; but the non-
uniqueness is also related to K-theory: it is classified by the Whitehead
torsion invariant to be studied in 52.4 below.

1.7.15. Remarks. Since this is not a book on topology, we will not
prove any purely topological results here. However, in the interests of
completeness, let us say a few more words (without proofs) about Wallís
original results (in the topological setting) and about one other important
area of application, the spherical space form problem.

Wallís work on the finiteness problem was motivated in part by ear-
lier work of Swan [Swanl] on the question of when a finitely dominated
space X, with finite fundamental group 7~ = xi(X) and universal cover X
homotopy-equivalent to a sphere, can be homotopy-equivalent to a finite
CW-complex. Swan already realized that at least in this particular situa-
tion, an obstruction in Kc(&) plays a fundamental role, and he showed
how to kill off this obstruction in order to solve a particular geometric prob-
lem in which he was interested. This geometric problem was a modified
version of what is now known as the spherical space form problem: to
classify compact manifolds Mî,  known as spherical space forms, having
a sphere as universal cover, A? 2 Sî. Certain obvious examples, such as
real projective spaces and lens spaces, arise from free orthogonal actions of
finite groups, and the groups that can act in this way are completely known
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(see [Wolf]). However, a rather subtle question remains: can there be any
examples of spherical space forms not homotopy-equivalent to examples of
this type, for instance with fundamental groups (such as the non-abelian
group of order pq, where p and q are distinct odd primes with pJ(q  - 1))
that cannot have a free orthogonal action on a sphere?

The answer to this latter question turns out to be ìyes,î and the question
of what finite groups can act freely on spheres is now totally understood
(see [Madsen]). The relevance of the finiteness obstruction comes from
the following method of attack. We begin by looking at n-dimensional
CW-complexes X with the desired finite  fundamental group 7r, having the
property that the universal cover X is homotopy-equivalent to a sphere
Sî.  This means of course that X must have vanishing homology in degrees
0 < j < n, and infinite cyclic homology in degree n, but in fact, by the basic
theorems of homotopy theory (the Hurewicz and Whitehead Theorems, to
be discussed in $5.1 below), this homology condition is not only necessary-
but also sufficient. The study of the homology of X shows then that r must
be a ìgroup with periodic homologyî [CartanEilenberg,  pp. 357-3581,  for
which there is an elegant classification theorem [CartanEilenberg,  Ch. XII,
5111. It turns out that a necessary and sufficient condition for the existence
of such a space X is that each Sylow subgroup of r be either a cyclic group
or a generalized quaternion group.

However, one is still faced with another problem: given the X whose uni-
versal cover is homotopy-equivalent to a sphere, is X homotopy-equivalent
to a (smooth) compact manifold M? If the answer is ìyes,î then the uni-
versal cover of M will be a compact manifold homotopy-equivalent to a
sphere. By known results on the Poincare  Conjecture, the universal cover
is then actually homeomorphic  to a sphere, except perhaps when n = 3.
(See the remarks following Theorem 2.4.4 below.)

A detailed sketch of how this problem is attacked may be found in Mad-
senís survey [Madsen]. However, a crucial first step already understood by
Swan comes from the well-known fact that any smooth compact manifold is
homotopy-equivalent to a finite CW-complex. Thus if M is to exist in the
homotopy type of X, the CW-complex X must have vanishing finiteness
obstruction in &,(Zr). This group is known to be finite when 7r is finite,
but is usually quite hard to compute. For cyclic groups of prime order,
we began the calculation of this group (in terms of number-theoretic in-
variants) in Example 1.5.10, and will complete the calculation in Example
3.3.5(b) below.

1.7.16. Exercise (Nontriviality of the finiteness obstruction for
bounded complexes of free modules), Let R be a ring with unit, P a
finitely generated projective R-module which is not stably free.

(a) Show that there is an R-module homomorphism cp : F + F, where
F is a free R-module of countable infinite rank, that is, split sur-
jective with kernel 2 P. (This is attributed to Eilenberg, though
the idea may be older. Compare Exercise 1.1.8.)
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(b) Deduce that the complex

. . . +o+o+F~F+O+O-_,...

is homotopy-equivalent to the complex

. . . -+o~o+P+o+o+o+...,

but not to a complex of finite length consisting of finitely generated
free modules.

1.7.17. Exercise. Show that the condition that R be Noetherian in The-
orem 1.7.13 is necessary, by exhibiting a non-Noetherian ring R and a chain
complex of finite type of free R-modules that does not have finitely gen-
erated homology. Hint: find a non-Noetherian commutative ring R (not
an integral domain) containing an element x whose annihilator in R is not
finitely generated.

1.7.18. Exercise (Behavior of the finiteness obstruction under
products). It is of interest to know how homotopy finiteness of X and of
X x 2 are related, when 2 is itself a finite CW-complex, for instance, a
sphere or a projective space. The algebraic analogue of this is to take the
tensor product of two complexes to obtain a double complex. Note that
?ri(X x 2) g 7ri(X) x ri(Z), so that the relevant ring for the geometrical
problem is

i&(X x 2) 2 @Q(X) x Ti(Z)] = ;zTi(X) @z Zn1(2>.

(4

(b)

(cl

(4

Show that if (Cií,  dí)  and (I?,ë,  dí)  are complexes of projective R-
modules and S-modules, respectively, then

(

cj =  @I c;-l, @zC,2,
k=-cc

dj = d1 @ id + (-l)Pid @ d2 on 12í;  I& Ci

defines a complex of projective R @IZ S-modules, called the total
complex of the double complex Ci 8~ Cz.
Show that if (C,ë,  dí) is homotopy-equivalent to (Ci, &) and if
(C,ì,  d2) is homotopy-equivalent to (C.ì,  d2),  then the total com-
plex of Ci 8~ C,2 is homotopy-equivalent to the total complex of
C! @Z Cz. (You can either carry the homotopies around, or else
use a mapping cone argument and Theorem 1.7.7 to reduce to the
case where one of the complexes is contractible.)
Deduce that if X(Cí)  and X(Cî) are well defined, so is X(C), and
that if either X(Cí)  or X(C2) vanishes, so does X(C).
Suppose S = Z (this is the algebraic analogue of taking 2 to be
simply connected in the geometrical problem). Show that when
X(Cí)  is well defined and C2 is of finite type, then

J?(C)  = X(Cí)x(CîL
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where X(Cî)  E Kc(Z)  = Z. The topological version of this exercise
shows that if X is dominated by a finite CW-complex and Z is a I-i-
nite complex with X(Z) = 0, then X x 2 is homotopy-equivalent to
a finite complex, and that if 2 is simply connected with X(Z) # 0,
then the Wall obstruction of X x 2 is x(2)x (the Wall obstruc-
tion of X). In particular, taking a product with S’ kills finiteness
obstructions, and taking a product with S2 multiplies them by 2.

1.7.19. Exercise (Algebraic finite domination) [Ranicki]. Recall that
a space X is called finitely dominated if up to homotopy it is a retract of
a finite CW-complex; in other words, if there is a finite CW-complex Y
andtherearemapsf  :X-+Y,g:Y-+Xwithgof  zidx. Nowif
X is literally a retract of a finite CW-complex, in other words, if we can
arrange to have g o f = idx, then obviously the singular chain complex
of X is a direct summand in the singular chain complex of Y, which in
turn is homotopy-equivalent to the cellular chain complex of Y, which is of
finite type. Thus in this case it is clear that the singular chain complex of
X satisfies the hypothesis of Theorem 1.7.12. However, it is perhaps not
immediately apparent that the same holds true if we only have go f N idx ,
for then the singular chain complex C, of X is only a direct summand of
the singular chain complex D. of Y ìup to homotopy.”

The following trick for dealing with the general case is due to Ranicki.

0)

(2)

Suppose C. is a chain complex of projective R-modules, bounded
below (say non-zero only in non-negative degrees) which is a ìdirect
summand up to homotopyî of a complex of finite type D, of free
R-modules. In other words, we assume we are given chain maps
f : C. -+ D. and g : D, + C., as well as a chain homotopy h
satisfying idc - g o f = d o h + h 0 d. Note that f 0 g - (f o g)" =
do f hg + f hg o d, so that f hg gives a chain homotopy between fog
and (f o g)2. Show that the endomorphism p of @&, Di given by
the matrix

. .. . . .. .

is an idempotent, so that its image is a finitely generated projective
module over R.
Let Ci = @i=, Dj and define a map d’ : C,! -+ C,!_, by the (i-l) xi
matrix
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if i is even,

if i is odd. Show that (dí)2  = 0, so that (CL,  dí) is a chain complex.
(3) Define maps cp : Ci * Ci and $ I Ci + Ci by

and by

= hig(zo)  + hi-ëg(xl)  + . . . + hg(zi-1)  + g(xi) E Ci.

Show that cp and 1c, are chain maps and that they give a chain
homotopy equivalence between C. and CL. (Hint: 1c, o cp = g o f,
which we already know is chain homotopic to the identity. The
homotopy between cp o $ and the identity is given by a simple
ìshiftî map.)

(4) Suppose D. is of ìdimension n,” in other words, that Di = 0 for
i > n. Thus Ci z @y=, Dj for all i 2 7~. Show by ìtruncatingî CL
that its finiteness obstruction (and thus the finiteness obstruction
of C.) is well defined, and equal to the class in I&(R) of the image
of p from (1).
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1.7.20. Exercise [Swanl, $61. The work of Swan discussed in Remarks
1.7.15 above leads to some interesting examples of finitely generated pro-
jective modules over group rings. Suppose G is a finite group of order n
and let R = ZG, the integral group ring. Define the norm element of R
bY iv = I&G g. Observe that for any g E G, gN = Ng = N, so N is
central in R and N2 = nN. Let r E Z be prime to n, and let P, be the
ideal of R generated by r and N. (It doesnít matter whether one takes
the ideal to be one-sided or two-sided, since N and r are both central.)
Obviously PI is just R itself.

(1) Show that P,. is the universal R-module defined by two generators
u and v and the relations gv = v all g E G, Nu = TV. (Here u
corresponds to r and v corresponds to N.)

(2) Show that P,. ” P,, provided T = r’ mod n. (Use (1) and define
the isomorphism by v H ví,  u H ZL’ + hví, where T - T’ = hn.)

(3) Show that R CB P+ Z P,. CB P,I. Note the suggestive analogy with
Lemma 1.4.11!  (Again use (1). If u” and vî are the generators of
P,.,! , send (0, vî) H (v, 0), (1, 0) H (u, auí + W), and (0, ë1~ì)  I-+
(Tí21,  C(W’ - TíVí)), where a, b, c E Z are suitably chosen.)

(4) Choose T and T’ in (3) to be multiplicative inverses of each other
mod n, and deduce that P, CB P,I Z R2, hence that P, and P,I
are projective modules whose images in l&(R) are the negatives
of each other. In particular, we find that if n = 8 and T = 3,
then since 3’ = 1 mod 8, P3 defines an element of &-,(R) which
must be either trivial or of order 2. It is known to be of order 2
and to be a generator of &(R)  when G = Qs is the quaternion
group. The projective modules P, naturally arise in the study of
the finiteness obstructions coming up in the spherical space form
problem (as explained above in 1.7.15).



2
IT1 of Rings

1. Defining K1

Mosccourses  in linear algebra begin with a discussion of vector spaces and
dimension, and then go on to a study of automorphisms of vector spaces,
i.e., linear transformations and their invariants (determinants, canonical
forms, and so on). The usual development of K-theory for rings follows
the same pattern. One begins by studying projective modules and their
stable classification via Ke, and then goes on to the study of the stable
classification of automorphisms of free and projective modules, in other
words, to invariants of (invertible) matrices, which are given by the functor
Kr.

We will begin with the classical approach to KI via matrices, and in
the next chapter will describe a more category-theoretic approach via the
study of the category of finitely generated projective modules.

2.1.1. Definition. Let R be a ring (with unit). Recall the definitions of
M(R) and GL(R) from 1.2.2. We call an n x n matrix elementary if it
has lís on the diagonal and at most one non-zero off-diagonal entry. More
precisely, if a E R and i # j, 1 < i, j 6 n, we define the elementary matrix
eij(a)  to be the (n x n) matrix with lís on the diagonal, with an a in the
(i, j)-slot, and with Oís elsewhere. The subgroup of GL(n, R) generated by
such matrices is denoted E(n, R). Via the usual embedding of GL(n, R)
in GL(n + 1, R) (see 1.2.2),  E(n, R) embeds in E(n + 1, R). The infinite
union of the E(n, R) is denoted E(R), and is usually called (by slight abuse
of language) the group of elementary matrices.

The following lemma, which summarizes some easy matrix identities, is
only needed in part at the moment, but is included here for future reference.

2.1.2. Lemma. The elementary matrices over a ring R satisfy the rela-
tions
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eij(u)eij(b)  = eij(u + b); (a)
ei.j(a)ekl(b)  = ekl(b)eij(a), j # Ic and i # 1; @I

e+j(a)ejk(b)eij(a)- ëe eik(ab),  i,j, k distinct; (c)

eij(a)eki(b)eij(a)-ëeki(b)-’  = ekj(--ba), i,j, k distinct. Cd)

Furthermore, any upper-triangular or lower-triangular matrix with lís  on
the diagonal belongs to E(R).

Proof. The relations axe easily checked by matrix multiplication. Sup-
pose A = (uij)  E GL(n, R) is upper-triangular with lís on the diagonal.
Then

A’ = (~$1 = &2(-a1&23(-a23).  3. en--l,n(-an--l,n)

still is upper-triangular with lís on the diagonal and has Oís on the super-
diagonal j - i = 1. Let

Aî = (a;)  = Aíe13(-ui3)e24(-ui4)  ...e,-z,n(-uk_2,,).

This now is upper-triangular with lís on the diagonal and has Oís on the
super-diagonals j - i = 1, 2. Continuing by induction, we construct a
sequence

A, Aí, Aî, . . . , A(ì-l)

of matrices in GL(n, R), each differing from the previous one by an element
of E(n, R), each upper-triangular with lís on the diagonal, and with the
additional property that uii) vanishes for 0 < j -i 5 k. Thus A(ì-ë)  = l,,
the n x n identity matrix, so A E E(n, R). The lower-triangular case is
similar. 0

2.1.3. Corollary. For any matrix A E GL(n, R), the 2n x 2n matrix

(: Aq
lies in E(2n, R).

Proof. Apply the identity

(; Aq =(: :)(-1-l  F) (: :) (! -b)

from the proof of Lemma 1.5.4. By Lemma 2.1.2, the first three factors on
the right lie in E(2n, R). And

(Y Tlí)=(i ;ë)(:  i)(:, ;ë)r
hence the last factor on the right is also in E(2n, R), by Lemma 2.1.2
again. Cl
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2.1.4. Proposition (Whiteheadís Lemma). For any ring R, the com-
mutator subgroups of GL(R) and of E(R) coincide with E(R). In par-
ticular. E(R) is normal in GL(R) and the quotient GL(R)/E(R)  is the
maximal abelian  quotient GL(R),b  of GL(R)I

Proof. Since E(R) C GL(R), [E(R), E(R)] c
thermore, relation (c) of Lemma 2.1.2 shows that

[GL(R), GL(R)]. fir-

provided i, j, and k are distinct. Thus each generator of E(R) is a com-
mutator of two other generators and [E(R), E(R)] = E(R). We need only
show that [GL(R),  GL(R)] C E(R). Let A, B E GL(n, R). We embed
GL(n, R) in GL(2n,  R) and compute that

ABA-IB-l  0 AB
0 1 0 B-F&) (a’ 1) (B;l ;)-

By Corollary 2.1.3, all the factors on the right lie in E(2n,  R), so

ABA-lB--l  E E(R). 0

2.1.5. Definition. If R is a ring (with unit), we define Kl(R) to be
GL(R),b = GL(R)/E(R).  Note that R * ICI(R) defines a functor from
rings to abelian  groups, for if cp : R + 5’ is a (unit-preserving) ring ho-
momorphism, cp induces a map from GL(R) to GL(S) and hence from
GL(R),b to GL(&t,.

If A, B E GL(R), the product of the corresponding classes [A], [B] E
ICI(R)  may be represented in two convenient ways. On the one hand,
[A] - [B] = [AB]. On the other hand, one may form the ìblock sum”

, and since

Corollary 2.1.3 shows that

[A @ B] = [AB @ l] = [AB].

One may also interpret K1 (R) as the group of canonical forms for invert-
ible matrices over R under elementary row or column operations (in the
usual sense of linear algebra). For if A E M(n, R), eij(a)A  is the matrix
obtained from A by adding a times the j-th row to the i-th row (an elemen-
tary row operation), and Aeij(a) is the matrix obtained from A by adding
a times the i-th column to the j-th column (an elementary column opera-
tion). Vanishing of K1 (R), for instance, would mean that every matrix in
GL(R) can be row-reduced or column-reduced to the identity matrix.
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2.1.6. Exercise: behavior of K1 under Cartesian products. Let
R = RI x Rz, a Cartesian product of rings. By using the obvious decompo-
sition GL(R) = GL(R1)  x GL(Rz), show that Kl(R)  2 Kl(R1)  x Kl(R2).
Generalize to arbitrary finite products. (Compare Exercise 1.2.8.)

2.1.7. Exercise: a ring with vanishing K1. Let k be a field and let V
be an infinite-dimensional vector space over k. Let R = Endk(V).  Show
that K1 (R) = 1. Hint: V is isomorphic to an infinite direct sum of copies
of itself. Thus if A E GL(R), one can form

and regard it also as an element of GL( R). Show that A 63 (w. A) is conju-
gate to (00 . A), hence that A represents the identity in K1 (R). (Compare
Example 1.2.6.)

2.1.8. Exercise: Morita invariance of K1. In analogy with Theorem
1.2.4, show that Kl(M,(R))  E Kl(R), for any ring R and any positive
integer n.

2.1.9. Exercise: KI of a direct limit. Show by an argument somewhat
similar to the proof of Theorem 1.2.5 that if (Ra)aE~,  (0,~ : R, --+ Ro)~<~
is a direct system of rings and R = 1% R, is the direct limit of the system,
then K1 (R) E 1% KI (R,).

2. K1 of division rings and local rings
We now begin to compute K1 for rings of practical interest. In the case of
a commutative ring, the determinant gives us our first piece of information.

2.2.1. Proposition. If R is a commutative ring and RX = GL(1, R) is
its group of units, the determinant det : GL(n,  R) -+ RX extends to a.split
surjection GL(R) + RX and thus gives a split surjection Kl(R) --+ RX.

Proof. Note that det(A @ 1) = det A, so that the determinants on
GL(n, R) for various n are compatible with the embeddings of GL(n, R)
in GL(m, R) for n < m. Since det(AB) = det(A)det(B),  we obtain a ho-
momorphism GL(R) --) RX which must factor through a map GL(R),b  +
RX (since RX is commutative). There is a splitting defined by RX =
GL(l, R) - GL(R). cl

Remark. When R is commutative, it is standard to denote the matri-
ces of determinant 1 in GL(n, R) by SL(n, R) and in GL(R) by SL(R).
The notations GL(R) and SL(R) stand for the general linear group and
special linear group of R, respectively. Note that since each elementary
matrix has determinant 1, E(R) 2 SL(R). The quotient SL(R)/E(R)  is
denoted SKI(R).

Now it is easy to compute K1 in the case of a field.
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2.2.2. Proposition. If F is a (commutative) field, then SKI(F) is trivial,
i.e., the determinant induces an isomorphism det : Kl(F) + FX.

Proof. This is basically a classical theorem of linear algebra, that any
matrix can be row-reduced to a triangular matrix. If A = (aij) E GL(n, F),
then the first column of A canít consist entirely of zeroes, since then the
matrix couldnít be invertible. So ai1 # 0 for some n. If i = 1, fine. If not,
as in the proof of (2.1.3),

0 . . . 1 . . .

eli(l)eii(-l)eii(l)  = i, t 0

t *I 7

0 . . . 0 ëI

so premultiplying A by eii(l)eii(-l)eii(l)  puts something non-zero into
the (1, 1)-slot. So we may as well assume ali # 0 .  A d d i n g  -aiia;;l  times
the first row to the i-th row for i # 1, we can now kill off all the other

entries in the first column. This reduces A to the form (ah’ i,) w i t h

Aí an (n - 1) x (n - 1) matrix, and of course det A = all det A í .
We now repeat the same procedure for Aí, thus changing A by elemen-

tary row operations to the form

with Aî an (n-2) x (n-2) matrix. Continuing by induction, we see that A
can be changed into an invertible upper-triangular matrix via elementary
row operations.

Now assume A is an invertible upper-triangular matrix. Adding multi-
ples of the last row to the other rows, we can kill off all the entries in the last
column except for unn. Then adding multiples of the (n - 1)-th row to the
other rows, we can kill off all the entries in the (n - 1)-th column except for
%-l,n-1. Continuing by induction, we can row-reduce A to an invertible
diagonal matrix D = (dij).  Since elementary row operations donít change
the determinant, this diagonal matrix D has the same determinant as our
original matrix A.

Finally, we have to transform D into a diagonal matrix with at most
one diagonal entry different from 1. This can be done using Lemma 2.1.3,
which shows that matrices of the form

diag(1,  . . . , 1, a, a-ë,  1, . . . , 1)

are elementary. Premultiplying D by such matrices, we transform D into a
diagonal matrix with at most one diagonal entry, say the one in the (1, l)-
slot, different from 1. This entry must be the same as the determinant, so if
A had determinant 1, we see that it can be transformed by elementary row



64 2. K1 of Rings

operations into the identity matrix. In other words, SL(n, F) = E(n, F)
and SKI(F)  is trivial. 0

Remark. Note that the proof above still works to some extent if F is
replaced by a non-commutative division ring R. The one thing that is
different is that there is no good definition of a determinant for matrices
over general non-commutative rings, so that the argument only proves the
follotiing.

2.2.3. Proposition. If R is a division ring, the inclusion

RX = GL(l, R) L) GL(R)

induces a surjection R& + Kl(R).

Proof. Exactly the same proof shows that every matrix in GL(n, R)
can be transformed by elementary row operations into a diagonal matrix of
the form diag(a,  1, . . . , l), in other words, into the image of GL(l, R) in
GL(n, R). Since Kl(R)  is abelian,  the resulting surjection RX + Kl(R)
factors through R$, =  RX/[RX,  RX]. 0

In fact, the same proof works in still greater generality.

2.2.4. Proposition. If R is a local ring (not necessarily commutative),
the inclusion RX = GL(l, R) L) GL(R) induces a surjection R$, +

Kl(R).

Proof. In the proof above, we only used the fact that R is a division ring
to show that each row and column of a matrix A = (aij)  E GL(n, R) must
contain an invertible element. However, this is still true over a local ring
since the non-units constitute the radical. Indeed, if A were to contain a
row or column all of whose entries were in the radical, then itís obvious A
couldnít be invertible. (For example, if the i-th row of A had all its entries
in the radical, then the same would be true for AB for any matrix B, so
A couldnít have a right inverse. Similarly, if the j-th column had all its
entries in the radical, then the same would be true for BA for any B, and
A couldnít have a left inverse.) 0

Now we get to the main theorem of this section, which is a calculation
of K1 (R) when R is a local ring or division ring. Since we already have an
upper bound on the size of Kl(R)  from Proposition 2.2.4, we need a lower
bound, in other words, a homomorphism out of Kl(R)  into some abelian
group, akin to the determinant. The main idea of the construction is due to
Dieudonne;  we have followed the exposition in [Srinivas,  (l.S)] (with small
variations).

2.2.5. Thiorem. Let R be a local ring, not necessarily commutative.
Then there exists a unique ìdeterminantî map GL(R) + R& with the
following properties:

(a) The determinant is invariant under elementary row operations. In
other words, if A E GL(n, R) and Aí is obtained from A by adding
a (left) multiple of one row to another row, then det Aí = det A.



2. K1 of division rings and local rings 65

(b) The determinant of the identity matrix is 1.
(c) If A E GL(n, R) and if a E RX, and if Aí is obtained from A

by (left-)multiplying one of the rows of A by a, then det Aí =
(ti)(det  A), where si denotes the image of a in R&.

The determinant also has the following additional properties:

(d) If A, B E GL(n, R), then det(AB) = (det A)(det B).
(e) If A E GL(n, R) and if Aí is obtained from A by interchanging

two of its rows, then det Aí = (-i)(det  A).
(f) The determinant is invariant under taking the transpose of a ma-

trix.

Proof. First we check the uniqueness and the fact that (d)-(f) follow
from (a)-(c). Then we prove the existence by an induction argument.
Suppose a map det exists satisfying (a)-(c). By Proposition 2.2.4 and
its proof, any matrix in GL(n, R) can be row-reduced to one of the form
diag(a,  1,. . . , 1). Hence by (a), the determinant is determined by its value
on such matrices. But by (c), det(diag(a,  1,. . . ,l))  = ii(det  l), which
by (b) is just 6. Hence (a)-(c) determine det uniquely. Furthermore, if
E E E(n, R) and EA = diag(a, 1,. . . , l), then we have det A = ti, while
det(AB)  = det(EAB) by ( a), w rc can be rewritten as det ((EA) B). Sinceh’ h
premultiplying a matrix by diag(a, 1,. . . , 1) amounts to left-multiplying the
first row by a, we have by (c) that

det(AB) = det((EA)B) = Zi(det  B) = (det A)(det B),

proving (d). To check (e), note that if A E GL(n, R) and i < j 5 n, then
interchanging the i-th and j-th rows can be accomplished in two steps: pre-
multiplying by the elementary matrix eij(l)eji(-l)eij(l),  and then mul-
tiplying the i-th row by -1. Hence (e) follows from (a) and (c). Finally,
to check (f), note that by (a) the determinant is equal to 1 on elementary
matrices, whereas by (d) it is multiplicative. Hence the determinant is un-
changed under postmultiplication by elementary matrices, in other words,
elementary column operations. Furthermore, condition (c) imphes  that for
aERX,

det (diag(1,  . . . , 1, a, 1, . . . , 1)) = 7i.

Now consider the map detí : A I-+ det(At),  where At is the transpose of A.
This clearly satisfies (b), and since the transpose of an elementary matrix
is elementary, detí is also equal to 1 on elementary matrices. Furthermore,
we have

detí(AB)  = det ((AB)t)  = det(BtAt) = det(Bt) det(At)

= detí(B)detí(A) = detí(A)detí(B),

since the determinant takes values in an abelian group. So detí satisfies (d),
and since it is 1 on elementary matrices and 7i on diag(1,  . . . , 1, a, 1, . . . , l),
it satisfies (a) and (c) as well. By the uniqueness of a map satisfying (a)-(c),
detí must coincide with det, proving (f).
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Now we proceed to the existence proof. We define det,(A)  for A E
GL(n, R) by induction on n, in such a way that det,+,(A@  lm) = det, A,
so that we get a well defined map on GL(R). Clearly when n = 1 we
define detr(a)  = 7i, and properties (a)-(c) are satisfied. So this starts the
induction. Assume now that weíve defined detk for k < n with properties
(a)-(c) and compatibility for varying k, and letís define det, and show
that it satisfies (a)-(c) and compatibility with detk for k < n. Let A E
GL(n, R), and denote the rows of A by Al,. . . , A,. Let bi,. . . , b, be the
entries of the first row of A-ë.  Since A-lA = l,, expanding out the matrix
product gives the relation

blAl + . . . +&A,=(1 0 . . . 0).

In particular, if we write Aj = (ajl Bj ), where Bj E Rî-l,  then Cj bj Bj
= 0.

By an argument already used before in the proof of Proposition 2.2.4,
an entire row of A-’ canít  consist of elements of radR,
the bjís  is invertible, say the i-th one. We then obtain

b;ëblB1  +. . . + b;lbi_lBi_l  + Bi + b;lbi+lBi+l  + 1..

SO adding multiples of the other rows to Ai row-reduces

so at least one of

+ b;ëb,B,  = 0.

A to the form

a11 Bl

~-1,  I Bi-I
b;’ 0

ai+l,  I Bi+l

since

ail + C bilbjajl  = bilbiail + C bilbjajl
j#i j#i

If relations (a)-(c) are to hold, we see that we must therefore take

det, A = (-l)i6;1det,_i



2. K1 of division rings and local rings 67

and we therefore adopt this as our definition. The only problem is to
show that this is independent of the choice of i (subject to the condition
bi E RX).  Suppose i < j and biy  bj E RX. We need to show that

(-l)ibil det,-i  Ci = (-l)jbT’ de&-i Cj,

where

Ci = ) cj =

Now Cj can be obtained from Ci
to get

c=

by first permuting the order of the rows

\

7

/

then changing the i-th row from Bj to Bi. Now going from Ci to C involves
cyclically permuting the j - i rows (Bi+l, . . . , Bj). Hence by condition
(e) for de&-i, det,_i C = (-l)j-i-l  det,_i C. And Bi = -biíbjBj+(a
linear combination of other rows), so by conditions (a) and (c) for de&-i,
det,_i Cj = -biíbj  det,_i C and

(-l)jb;’  &t,_l Cj = (-l)j-1b,T16~1bj  det,._i C

= (-l)ib~lb~lbj  det,_i Ci

= (-l)%;ëdet,_i  Ci,

as required. Thus det, is well defined.
To complete the proof, we only need to show that det, satisfies (a)-

(c) and agrees with de&-i on matrices of the form B @ 1, B and (n -
1) x (n - 1) invertible matrix. Condition (b) is trivially true from the
definition. As for (a), suppose Aí with rows A:,. . . , AL has Ai = Aj for
j # i, Ai = Ai + aAk,  where a E RX and i # k. Then Aí = eih(a)A,  hence
(Aí)-’  = A-ëeik(-a)  and the elements bí,, . . . , b; of the first row of (Aí)-’
are the same as bl,. . . , b, except for bk = bk - bia. If bj E RX for some
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j # k, then we have

det, Aí = (-l)jbF’  det,_i

so by (a) for det+i, det, Aí = det, A. The only case we havenít covered
is where bk and be = bk - bia are both invertible and bi lies in rad R for
i # k. In this case,

&

and

det, Aí = (-l)ìbí,’  det,_i

(1

Sk

B,

det, A = (-l)kbil  det,_i ,

whereas !?k = bk (since bia E rad R) and again det, Aí = det, A. So this
confirms property (a) for det,.

Now we check (c). Suppose Aí with rows A:,. . . , AL has A$ = Aj for
j # i, Ai = aAi, where a E RX. Then Aí = di(a)A, with di(a)  the diagonal
matrix with all lís on the diagonal except for an a in the (i, i)-slot. Hence
(A/)-l  = A-ëdi(a-ë)  and the elements bi, . . . , bk of the first row of (Aí)-1
are the same as bl, . . . , b, except for b: = bia-ë.  Again there are two cases.
If bj E Rx for some j # i, then we have

det, A’  = (-l)jb;’ det,_i

4

Bi-1
aBi
Bi+l

\

7

/



2. K1 of division rings and local rings 69

so by (c) for det,_i, det, Aí = si det, A. The only case we havenít covered
is where bi is invertible and bj lies in rad R for j # i. In this case,

det, Aí = (-l)ibíil  det,_i

and

det, A = (-l)%;’ det,_i

whereas bíi  = bi~i-’ and so again det, Aí = det,A.  So this confirms
property (c) for det,. For compatibility with de&-i,  note that Be1 can be
transformed into 1 @B by cyclically permuting both the rows and columns,
hence by (d) and (f), which follow from (a))(c), det,(B@l) = det,(l@B).
The latter is trivially the same as det,_i B by our definition. So this
completes the proof. 0

2.2.6. Corollary. If R is a local ring, not necessarily commutative, then
the determinant of (2.2.5) induces an isomorphism

Proof. This is immediate from 2.2.4 and 2.2.5, since the composite GL(1,
det

R) L) GL(R) + Rzb is just the quotient map RX --H R&. Cl

2.2.7. Exercise.
terms of m, for any
2.1.6 and Corollary

2.2.8. Exercise.
integer m > 0.

(Compare Exercise 1.3.14.) Compute Kr(Z/(m))  in
integer m > 0. (Split into local rings and use Exercise
2.2.6.)

Compute Ki(lc[t]/(P)),  for any field k and for any

2.2.9. Exercise (Another approach to a determinant over the
quaternions). Let W be the usual ring of quaternions a + bi + cj + dk,
where a, b, c, d E Iw and ij = k, i2 = j2 = k2 = -1. Recall that one defines
a+bi+cj+dk=a-bi-cj-dk.

4

b)

Show that if one defines N(z) = zZ, then N gives a surjective  ho-
momorphism W x -+ rW:. In particular, the commutator subgroup
of lHlx  must lie in the kernel of N.
Show that the kernel of N is exactly the commutator subgroup
of IHIí.  (Hint: show that iejíi-’  = e-jí,  and similarly with i, j,
k cyclically permuted. Deduce that e2je1,  e2jB2,  and e2je3  are all
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c)

commutators. Show that these generate an open neighborhood of
1 in N-ë(l)  z S3. But S3 is connected.) Thus RI&,  g RG.
Since W is a vector space over R of dimension 4, W may be embed-
ded in Md(R)  by the left regular representation, and G,&(W)  +.
GL4,(R). Composing with the determinant gives a homomorphism
detn : GL,(W)  --) Rx. Relate this to the Dieudonne  determinant

and to N, a n d  s h o w  t h a t  N : K1(W)  -% lit:.

2.2.10. Exercise (Some rings of interest in operator theory).
Here is an exercise dealing with some rings (actually, algebras over C)
of great importance in operator theory and functional analysis. While they
are not themselves local rings, we will study a ìdeterminantî somewhat
similar to that which we have constructed above in Theorem 2.2.5, and we
will make a connection with local rings in the next exercise.

Let ëH  be an infinite-dimensional separable Hilbert space with an or-
thonormal basis ei , e2, . . . . A bounded operator on ëH  is called compact
if it sends the unit ball to a pre-compact set, or equivalently, if it is a limit
(in norm) of operators of finite rank. It is a well-known fact that the spec-
trum of any compact operator consists of 0 and of a sequence of eigenvalues
tending to 0. (This is to be interpreted to mean ìcounting multiplicities,”
in the sense that no non-zero eigenvalue has infinite multiplicity. Zero itself
may or may not be an eigenvalue.) A compact normal operator is diago
nalizable. We denote by K(E) the Banach space of all compact operators
with the operator norm:

This is a closed twosided  ideal in the algebra L3(ëH)  of all bounded opera-
tors.

Now if S is a positive bounded operator on 7-t, its trace is defined by

TrS = e(Sei, ei) E [0, co].
i=l

The trace is independent of the choice of orthonormal basis, for if the sum
converges and el, , ei, . . . is another orthonormal basis, then

g(Sei, ei) = 2 (2 (Sk, e;) eg, ei)
i=l i=l j=l

=  2 (Sei, eg)(eg, ei)
i,j=l

=  5 (Se;, ei)(ei, e[i)
i,j=l
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a3 03

= c(c:Se;, ei) ei, e$
j=l i=l 1

An immediate consequence is that if U is a unitary operator, TrS =
Tr(U*SU).  (Compute the trace of U*SU  using the original basis and the
trace of S using the basis {Uej}.) If S = T*T is a positive operator and
the trace Tr(S) is finite, then (Sei,  ei) + 0, i.e., IITeil)  + 0, so that {Tei}
is norm-convergent to 0. Thus T is compact and S is compact.

If 1 5 p < 00,  the Schatten pclass of ëFI  is the Banach space LP(1-I)  of
operators T for which

IITIIP = Pm7î))+  < 007
where ITI = (T*T)i.  The Schatten classes consist of compact operators
since this condition implies ITIP  is compact, hence ITI and T are compact.
It turns out that II lip is a norm and that CP(ëFI)  is complete in this norm.
Furthermore,  L?ë(R)  C CJî(7-L)  for p 5 pí, since (for T compact) T E LP(3.t)
if and only if the sequence of eigenvalues of ITJ lies in 1P. When p = 2,

llTl[~ = (Tr (TíT));  = fJT*Tei,  ei) = g(Tei,  Tei),
i=l i=l

so lITI  =  (T,  T) HS, where the inner product ( , )HS is defined by

(T, S)HS = C(Tei,  Sei).
i = l

Thus in this case L2(7-Q  is a Hilbert space, called the Hilbert space of
Hilbert-Schmidt operators. In general note that clearly llXTllp = lXlllTllp
and lITlIp  > 0. If lITlIp  = 0, then the positive quadratic form defined by
ITIP  vanishes on all the ei, hence everywhere, so ITIP = 0, IT( = 0, and
T = 0. The triangle inequality can be verified by showing first that

lITlIP = sup I TvF)l7
F of finite rank P Q

IIFIIqIl

where if p = 1 we interpret IIFIIq to mean the operator norm of F. (Since
TF has finite rank, its trace is well defined in the usual sense.) One can
also check easily that f?ë(N) is a two-sided ideal in L3(ëFI)  (though not closed
in the operator norm).

The space ,Cl(ëFI) is called the space of trace-class operators. If T E
L1 (ëH),  the sum C(Tei, ei) converges absolutely, and defines a linear func-
tional TrT independent of the choice of orthonormal basis (just as before).
Hence, once again Tr(U*TU) = Tr(T)  for U unitary.
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Now let k(3-1) = C.l~+K(ëH), and similarly let LP(X) = C.lx+LP(ëFI).
Each of these rings has a unique maximal two-sided ideal, of codimension
one. (For instance, X(1-t) is a two-sided ideal in X(7-I)  of codimension one,
so it is maximal even as either a left ideal or right ideal.)

(1)

(2)

(3)

(4)

Complete the proof that 1) )I 1 is a norm and that Lí(X)  is complete,
by showing that for A E 8(7-l) and T E Cí(a),

Hint: Use the polar decomposition T = U(T( to split AB a~
(AU)TI+)(JT\j)  dan use the Cauchy-Schwarz  inequality for ( , )HS.
Then if T, S E ,!Zí(l-t), write T + S = U)T -I- SI (polar decompo
sition)  and estimate Tr(lT + Sl) as Tr(U*(T + S)) = Tr(U*T) +
Tr(V*S)  via the above estimate.
Show that if T or S is of trace class, then Tr(TS)  = Tr(ST).  Hint:
if T is of trace class and S is unitary, this follows from invariance
of the trace under conjugation by S. Now get the result for all S
(with T still of trace class) by taking linear combinations.
Show that t:(X) and f?(X) have split surjections onto @ inducing
surjections on Kr.
(The operator determinant) Let R = kí(N),  the trace-class
operators with identity adjoined. Let RF = ker(RX  + Cí),  and
call this the group of determinant-class operators. Construct a
homomorphism det : Rr -+ Cx with the property that

(*) det(eT)  = eTrcT) for T E Lí(X).

(Here the exponential of an operator is constructed via the usual
exponential power series.)

Hint: First show that every determinant-class operator D is an
exponential of a trace-class operator. One can do this by noting
that every element of the spectrum of D, except perhaps for 1, is
an eigenvalue of finite multiplicity, and that 1 is the only accu-
mulation point of the spectrum. Hence, if VI is the span of the
generalized eigenspaces for D corresponding to the eigenvalues X
with IX - 11 2 1, one obtains a (not necessarily orthogonal) direct
sum decomposition of 3-1 into two invariant subspaces VI and V,
for D, where VI is finite-dimensional and the spectral radius of
(D - 1)/v, is < 1. Then one can take a logarithm of D(v, using
the usual power series

and choose any logarithm for the invertible operator D(v,  of finite
rank (using, say, the Jordan canonical form).

Next, observe that if T and S are both of trace class and eT =
es = D, then if T has eigenvalues Aj and S has eigenvalues pk, the
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set {exj} must coincide with the set {el-lk},  and the multiplicities
must match up. On the other hand, Xj + 0 and jJk + 0. One can
see from this that again one can find a (not necessarily orthogonal)
direct sum decomposition of l-l into two invariant subspaces VI and
Vz for both T and S, where VI is finite-dimensional and eTlvl =
eslvl, and where TI v, = Slv,. In particular,

n(T)  --Tí(S)  = ëll(Tlv,)  -ll(Sl,)  E %iZ, so eTrtT)  = em(ë).

This shows that (*) gives a well-defined definition of det.
Finally, show that the determinant is multiplicative, i.e., that if

T and 5’ are of trace class, then det(eTeS)  = det(eT)  det(es). On
can do this using the Campbell-Baker-Hausdorff formula

etTesS  _-

and the fact ((2) above) that Tr vanishes on commutators.
(5) Extend the definition of det to a homomorphism defined on

ker[GL(R)  + GL(C)].

(Hint: if T E GL(n, R) and T H 1 E GL(n, C), then T may be
viewed as a determinant-class operator on 7f @c Cî.)

2.2.11. Exercise (A local ring in operator theory). In this exercise,
we pursue the use of K-theory in operator theory in the context of local
rings. Let 3-t be a complex Hilbert space as in the last exercise and let A be
some algebra of bounded operators on ëH,  not necessarily with unit. Thus
A could be B(X) or Ll(7-t).  Let R be the ring of formal operator-valued
power series a0 . 1 + aA + z2A2 + -. 1, where Aj E A for j 2 1 and the
constant term a0 . 1 is a scalar multiple of the identity operator.

(1)

(2)

(3)

(4)

Show that if a0 # 0, then a0 . 1 + zAl + z2A2 +. . . has an inverse
in R. Deduce that R is a local ring, with radical the power series
without constant term.
If A is a Banach algebra, show that the same holds for Rí if we
define R’ similarly using only those power series with a positive
radius of convergence in z, in other words, with germs at z = 0 of
analytic operator-valued functions in place of formal power series.
Let A E 23(X). Then 1 - zA has an inverse in R, which is essen-
tially (except for the change of variable z I--+ z-ë)  what is called in
operator theory the resolvent of A. Show that the power series
for (1 - zA)-’ converges for Iz( < IIAl(-l.
Let A = Lí(R).  Show that the determinant of the last exercise
defines a homomorphism from (Rí) ’ to the group of units in the
commutative local ring of germs of analytic functions around 0.
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Show also the following useful fact: if A is a trace-class operator,
f~(z)  = det(1  - zA)-’ extends to a function of z analytic in the
whole complex plane except perhaps for countably many isolated
singularities, and that if zc is a zero or singularity of f~, then
~0’ E Spec.4.  (Actually, more is true; f~ is entire analytic, and
f~(zc) = 0 if and only if ze-’ E Spec  31 for
more details.)

3. K1 of PIDs and Dedekind domains
As we did in Chapter 1 in studying Kc, we shall proceed from the study
of Ki of division rings and local rings to the study of Kr of the most
elementary examples of non-local commutative rings. Of particular interest
are the sorts of rings that occur in algebraic geometry and number theory.
Here we shall discuss PIDs and Dedekind domains; polynomial rings will
be dealt with in the next chapter.

The easiest examples to treat are Euclidean rings. These include Z,
the Gaussian integers Z[i],  Z[w], the rings of integers in a few other
special number fields, and the polynomial ring Ic[t] in one variable over a
field Ic. To fix notation, we remind the reader of the basic definition.

2.3.1. Definition. A (commutative) integral domain R is called a Eu-
clidean ring or Euclidean domain if there is a norm function ) 1 :
R + N with the following properties:

(i) If a E R, [a(  = 0 if and only if a = 0.
(ii) If a, b E R, (ubl  = lullbl.
(iii) (Euclidean algorithm) If a, b E R, b # 0, then there exist q,

T E R, called the quotient and remainder, respectively, such
that a = qb + r and 0 5 (T] < (bJ.

In the examples Z, Z[i], Z(w], and k[t],  the norm function is given

by the usual absolute value, by (a + &i( = o2 + b2, by (a + b*I =
u2 - ub + b2, and by (f(t)]=2desf (with the convention that deg0 = --co),
respectively.

2.3.2. Theorem. If R is a Euclidean ring, then SKI(R) vanishes and
Kl(R) g RX. In fact, for each TX, SL(n, R) = E(n, R).

Proof. Let A = (uij) E GL(n, R). We try to proceed roughly as in the
proof of Proposition 2.2.2, but the problem is of course that there is no
guarantee that there will be an invertible entry in a given row or column
of A. However, the norm function on R gives us a mechanism for doing an
induction. To illustrate, start with the first column of A. Not all elements
of this column can be zero, so there is some air # 0 and with Iair ) minimal
subject to this condition. If Jail]  = 1, then ai1 must be a unit. (By the
Euclidean algorithm, 1 = quil + r with 0 _< ]rl < 1, hence with Jr] = 0,
so r = 0 by (i) of (2.3.1).)  If lair]  > 1, then ai1 is not a unit, and so
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generates a proper ideal (ail).  On the other hand, since A is invertible, the
ideal generated  by the  elements of the first column must be all of R, and so

there is some j # i with ajl $ (ail). Applying the division algorithm giveg
ajl = &&I + r, where jr/ < [ail).  Since uji $ (ail), T # 0 and thus jr/ > 0.
So by subtracting q x (i-th row of A) from the j-th row, we can row-reduce
A to decrease the minimal norm of a non-zero element in the first column.
Once weíve shown this, then iterating the reduction procedure enables us
to reduce to the case where thereís a unit in the first column. So then
we can proceed as in the case of R a field and row-reduce A to the form

a11 *

( >0 Aí ’ where ali is a unit and Aí is of size (n - 1) x (n - 1) and

invertible. Then we repeat the whole process with Aí, etc. The rest of the
proof is identical to that of Proposition 2.2.2. êI

2.3.3. C o r o l l a r y .  K1(Z)  = (1, -l}, Ki(Z[i]) 2 (1, i, -1 ,  -i},

Kl(Z[v]) g {6-th roots of l}, and Ki(lc[t])  % Icx.

Proof. In the examples of 2.3.1, itís easy to see which elements have
norm 1. q

Theorem 2.3.2 naturally raises the question of whether the same state-
ment is true or not for more general PIDs or Dedekind domains. Unfor-
tunately, the answer is ìnoî; there are PIDs with non-zero SlYi, though
they are not so easy to find. (For examples, see [Ischebeck] and [Grayson].)
Thus it seems the idea of the proof of Theorem 2.3.2 cannot be pushed
any further. However, there is one general result about Ki of Dedekind
domains that arises as a special case of Bassís general theory of ìstable
range.î One may view the vanishing of SK1 for a commutative ring R as
the statement that Kl(R) is generated by the image in GL(R) of GL(1, R).
When this doesnít hold, the next best thing would be for Kl(R)  to be gen-
erated by the image in GL(R) of GL(2, R). Instead of trying to explain
the general theory (for which one can consult [Bass]), which gives for a ring
R an estimate on the smallest value of n for which K1 (R) is generated by
the image in GL(R) of GL(n, R), we will give a simplified proof of the one
case we need. We begin with a lemma which will also be used in Section 5
of this chapter. Because of Corollary 2.1.3, Lemma 1.5.4 is just a special
case of the following.

2.3.4. Lemma. Let R be a ring (with unit) and I a two-sided in R. Then
for any n, the natural map E(n, R) -+ E(n, R/I) is surjective.

Proof. By definition, E(n, R/I) is generated by elementary matrices
eij(b),  where b is the image in R/I of a E R. Such a matrix clearly lifts to
the elementary matrix eij(u)  E E(n, R). q

Kl(R) is generated
by the image in GL(R) of GL(2, R) (in fact, by the images in GL(R) of
GL(1, R) and of SL(2, R)).
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Proof. Let A E GL(n, R) and suppose n > 3. We will show that A

can b% row-reduced to a matrix of the form
1 *

( >0 A’
, where Aí is of size

( n - l )  x  ( n - l )  dan invertible. Subtracting aii x (the first column of A)

from the i-th column then reduces A to the form 1 0

( >
o B with B E

GL(n - 1, R), so [A] E ICI(R)  lies in the image of GL(n - 1, R). Induction
on n then gives the result of the theorem. (We already know the image of
GL(2, R) is generated by GL(l, R) and by SL(2, R).)

Now consider the first column of A. Since A is invertible, the ideal
generated by its entries is all of R. We will show we can do elementary
row operations on A to put at least one zero in the first column. One
this is done, the ideal generated by the remaining entries in the column is
all of R, so adding multiples of the other rows to the row with the zero,
we can change the zero to a 1. Then if necessary, we may premultiply by
eii(l)eii(-l)eii(l)  to put the 1 in the (1, 1)-slot. Subtracting multiples of
the first row from the other rows then reduces A to the desired form.

Let I be the ideal generated by usi,.  . . , a,~. If I = 0, then asi = 0 and
weíre already done. If I = R, then subtracting a linear combination of rows
3 through n from the first row puts a zero in the (1, 1)-slot, and weíre again
done. So we may assume I is a proper non-zero ideal. By Theorem 1.4.7,
we may factor I uniquely into a product of maximal ideals. By the Chinese
Remainder Theorem, this gives a corresponding factorization of R/I into
a product of local rings of the form R/Pî,  where P is a maximal ideal. By
Proposition 2.2.4, SK1(R/Pk) = 0, so by Exercise 2.1.6, SKl(R/I)  = 0.
In fact, by the method of proof, we know that SL(m, R/I) = E(m, R/I)
for any m. We will use this fact for m = 2.

For each element a E R, let b be its image in R/I. Since Rull + . . . +
Run1 = R, dividing by I gives that (R/I)cill  + (R/I)& = R/I. In other
words, we can find xi and 22 in R such that &iLii + ?z&i = i, or

det(221  2i) =I.

So we have a matrix in SL(2, R/I) = E(2, R/I). By Lemma 2.3.4, it lifts

to an elementary matrix ( fi2 if) in SL(2, R), and blxl + b2x2 = 1

(here we may have to change the original x1 and x2 within their I-cosets).
But on the other hand, xiuii +x2uzi - 1 E I, so there exist x3,. . . ,x, E R
with c&i ziuii = 1. For i 2: 3, we have xi = xi(blxl + b2x2). So we get
the equation

xi011  +x2a21+ (x3blxlax +x3b2xmd+.  . .+ (xnb1x1unl  +x,bzx2u,l)  = I

or

xi(oii  + xsblusi  + . . . + x,blu,l) + x2(u21+  x3bs-m +. . . + xnbsu,l)  = 1.

This says exactly that by adding (x3bl)  x (the 3rd row) + . . f + (xnbl)  x
(the nth row) to the first row, and by adding (x3b2)  x (the 3rd row) +. . -+
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(z,bs) x (the yth row) to the second row, we can change A so that the ideal
generated by the new all and ~21 is all of R. Then subtracting a linear
combination of the first and second rows from the last row, we can achieve
the desired zero. Cl

The above theorem suggests studying, for commutative rings R and
especially Dedekind domains, the subgroup of SKE(R)  generated by the
image of SL(2, R). The convenient way to do this is in terms of so-called
Mennicke symbols.

2.3.6. Theorem. Let R be a commutative ring.

For a, b E R with Ra + Rb = R, choose c, d E R with ad - bc = 1.

Then the class in SK1 (R) of
( )

z i E SL(2, R) isindependent of

the choice of c and d, hence can be denoted [a b] without possibility
of confusion. Such an element of SKI(R)  is called a Mennicke
symbol, and if R is a Dedekind domain, all elements of SKI(R)
are of this form.
[a b] = 1 ifae RX, bE R.
For a, b E R relatively prime, the Mennicke symbols satisfy the
relations [a b] = [b u] and [a b] = [a + bX b] for any X E R.
If Rala2 + Rb = R, then [al b] . [a2 b] = [0102 b].

Proof. (1) The assertion that the class of is independent of the

choice of c and d follows immediately from the calculation that if ,

E SL(2, R), then

(; 1) (; ;)-ë=(;  ;) (!;I ;p)=(,,ë,,  ;>.
The Mennicke symbols clearly exhaust the image of SL(2, R) in Kl(R),  so
by Theorem 2.3.5, they exhaust SKI(R)  if R is a Dedekind domain.

(2) is clear from the fact that if a E RX and A =
( >

z 1 E SL(2, R),

then we can subtract ca-’ x (1st row) from the second row to change

A to the form : o!r
( )

. Then multiplying by the elementary matrix

a-l 0

( >0 a
makes the matrix strictly upper-triangular, hence elementary.

For (3), note first that

(: :) (:I :)=(I: $7

so [u b] = [-b u]. When we verify (4),  it will follow that

[a b] = [-b a] = [b a][-1 u] = [b u] (by (2)).
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Furthermore,

so [u b] = [a+bX b].

To check (4)) assume Ralaz  + Rb = R. Then if

have determinant 1,

1 0 0
Premultiplying by ( 10 0 1 now keeps the first row the same and

0 -1 0
puts a 1 in the (3, 3)-slot, and further elementary operations reduce the
matrix to the form

ala2 b 0

( )

* o .
; 01

S o  [ai b][az  b] = [a102 b]. 0

2.3.7. Corollary. If R is a Dedekind domain and R/P is a finite field for
each non-zero prime ideal  of R, then SKI(R) is a torsion group.

Proof. Consider a Mennicke symbol [o b]. If b = 0, then a E RX so
[a b] = 1 by (2) of the theorem. Similarly, [a b] = 1 if b E RX. If neither is
the case, (b) is a non-zero proper ideal of R and so is a product of non-zero
primes ideals Pj by Theorem 1.4.7. Since each R/Pj  is finite, it follows that
R/(b) is finite (cf. the beginning of the proof of Theorem 1.4.19). Since the
image of a in R/(b) is a unit and (R/(b)) ’ is a finite group, there is some
k with uk E 1 mod (b), and then by (4) of the theorem,

[cz b]” = [u” b] = [l + bX b] (for some A) = [l b] = 1

by (3) and then (2) of the theorem. 0

This is about as much as one can say about general Dedekind domains.
However, for the examples of greatest interest in number theory, namely
the rings R of algebraic integers in number fields (finite extensions of Q), it
turns out that one can explicitly compute RX and also show that SKI(R)
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a real vector space of dimension ri + r2 - 1. Now a bound on

implies a bound on the absolute values of the elementary symmetric func-
tions of the ~j (a), which are the coefficients of a manic  polynomial equation
satisfied by a, and are ordinary integers. So the inverse image under X of
any given ball of lRTl+r+2 is finite, which shows that X(RX)  is discrete and
the kernel of X is finite.

The kernel of X therefore consists of a E R for which oq = 1 for some
q, in other words, of roots of unity. On the other hand, since A maps into
a torsion-free group, all roots of unity in F must lie in the kernel of A,
and the kernel coincides with the group of roots of unity in F, the torsion
subgroup of RX. If F = Z, then obviously RX is just {fl}, and coincides
with the kernel of A. If F is an imaginary quadratic field, then rs = 1,
~1 = 0, and V = 0, so again RX = ker A. Furthermore, for general F, since
the image of X is a discrete subgroup of a real vector space of dimension
ri + 7-s - 1, X(RX  ) is free abelian  of rank < ri + r:! - 1, and RX is finitely
generated.

It remains only to show that the rank of X(RX)  is precisely ~1 + ~2 - 1.

obvious elements of RX other than the roots of unity, even if ~1 + r2 - 1
is large. Since X(W) V ,

X(RX)  h a s  r a n k  e q u a l  t o  t h e  d i m e n s i o n  o f  i s  e q u i v a l e n t
to showing that V/X(RX) is compact, or to showing that there is some
compact subset K of V whose translates under X(RX  ) cover V.

To show this, we first recall that by the proof of Theorem 1.4.18,
rry;” 0.j  o f  t h e  additive group of R as a lattice
(discrete cocompact subgroup) in lR r1 x F'. In particular, the volume (in
the sense of n-dimensional Lebesgue measure) of (RF x P)/a(R)  is some
finite positive constant, say Ci.TJ = (WI,.  . . , u,,+,~) E V, let

Note also that since Cuj = 0, the product of the coordinates evj is 1.
Hence e” . a(R) (where . denotes coordinatewise multiplication) is again
a lattice in lP x cCr2 of covolume Ci. So if Q is a closed cube or ball of
volume > Ci centered at the origin in llV x Cc'*, its image in the quotient by
eî.a(R)  must have smaller volume, hence there had to be two points 21 and
x2 in Q with the same image. In other words, 21-22 E eî.a(R),  so that 2Q
(the cube or ball with dimensions twice as big) contains a point of e” .0(R).
Let Kí be the compact image of 2Q under the map lWí~  x P -+ lRrl+rz
defined by taking the logarithm of the absolute value of each coordinate.
Then we have shown that for all points 2, E V, v + A(R \ (0)) meets Kí.

This is almost, but not quite, what we want, since we are interested in
X(RX),  not X(R \ (0)) (w ic is a semigroup but not a group). However,h’ h
if Cís  denotes the maximum L1-norm  of a point in Kí,  in other words, the
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maximum value of the sum of the coordinates, then any a E (R \ (0)) with
e” . a(a) E 2Q must satisfy

However, as observed in the proof of Theorem 1.4.19, there are only finitely
many integral ideals in R of norm 5 ecz (for any Cz), and so up to units
there are only finitely many possibilities for a, say al,. . . , arc. Thus we have
shown that for any v E V, there is a unit u E RX such that v+ A(aj) +X(U)
meets K’ for some j 5 k. Thus there is a compact set K independent of v
such that v + X(U) meets K for some u E RX, and this proves the theorem.
(Take K = U3=1(K’  - X(uj)).) q

It has been shown in [BassMilnorSerre]  and in [Milnor, $161 that in fact
SKI(R)  vanishes when R is the ring of algebraic integers in a number field,
so that Theorem 2.3.8 gives the complete calculation of Kl(R) in this case.
However, this is not an easy theorem and there doesnít seem to be an ele-
mentary proof. With less effort, one can prove somewhat less, for instance,
that SK1 (R) is finite. There are quite a number of proofs available, though
all seem to require some additional tools. One method is to first show that
SL(2,  R) is finitely generated, for instance, by constructing an explicit fun-
damental domain for SL(2,  R) as a discrete subgroup of a product G of
ri copies of SL(2, R) and of rp copies of SL(2, C). It then follows from
Theorem 2.3.6 and Corollary 2.3.7 that SKI(R)  is finite.

An alternative argument in [Kazhdan]  uses representation theory. One
can show that for each n, SL(n, R) is a discrete subgroup of a product
G(n) of ri copies of SL(n, IFi) an o rs copies of SL(n, Cc), and that thed f
quotient G(n)/SL(n,  R) has finite invariant measure. On the other hand,
Kazhdan shows that for n L 3, the locally compact group G(n) has prop-
erty T, i.e., its trivial one-dimensional representation is an isolated point
in the space of all irreducible unitary representations of the group. Kazh-
dan also observes that property T inherits to discrete subgroups of cofinite
volume and to quotients thereof. Therefore the abelianization SL(n,  R)at,
has property T. However, for a locally compact abelian  group A, the ir-
reducible unitary representations are just the continuous homomorphisms
into T, the circle group, so property T means that A = Hom(A, T) is dis-
crete. For A discrete, A is compact, so the only way it can also be discrete
is if it is finite. So SL(n, R)ab is finite for n > 3. In particular, SKI(R),
which we have seen is a quotient of SL(3, R)at,, is finite.

2.3.9. Exercise (Finite generation of E(n) and SL(n)).

(1) Show using Lemma 2.1.2(a) that if a ring R is finitely generated as
a Z-module, then E(n,  R) is finitely generated as a group. Deduce
from Theorem 2.3.2 and Corollary 2.3.3 that SL(n,  Z), SL(n,  Z[i]),
and SL(n,  Z[=-%$]) are finitely generated groups for all n. (This
is not so easy to show directly.)

(2) Show using Lemma 2.1.2(c) that for any ring R, E(n, R) is its
own commutator subgroup (i.e., is a perfect group) for n 2 3.



82 2. K1 of Rings

Also use Lemma 2.1.2(c) to strengthen the result of (1): if a ring
R is finitely generated as a Z-algebra, then E(n, R) is finitely
generated as a group for n 2 3.

(3) Show that SL(2, Z) = E(2, Z) is not, its own commutator sub-
group, by exhibiting a homomorphism onto an abelian  group. Hint:
what is SL(2, Z/(2))?

2.3.10. Exercise (Stabilization of GL(n)/E(n)  for Dedekind
domains).

(1) Let R be any ring. Show using the proof of Proposition 2.1.4
that [GL(2,  R), GL(2, R)] C E(4, R) (when GL(2) is embedded
in GL(4) as usual).

(2) Again let R be any ring. Show that the image of GL(2, R) in
GL(n, R) normalizes E(n, R) if n 2 3. Hint: first note that the
image of GL(2, R) normalizes the subgroup El generated by the
eij(u) with i 5 2 and j 2 3, the subgroup El generated by the
eij(a) with j 5 2 and i 2 3, and the subgroup Es generated by
the eij(a) with i, j 2 3. Then use Lemma 2.1.2(c) to show El, E2,
and E3 generate all of E(n, R).

(3) Now let R be a Dedekind domain. By the proof of Theorem 2.3.5,
if n 2 3, GL(n, R) is generated by E(n, R) and by the image
of GL(2, R). Deduce from this fact and from (1) and (2) above
that for any n 2 3, E(n, R) is normal in GL(n, R), and that for
any n 2 4, GL(n, R)/E(n, R) is the abelianization of GL(n, R).
(In fact there are cases where E(2, R) is not normal in GL(2, R).
With somewhat more work, one can show that GL(n, R)/E(n, R)
is already abelian  for n = 3.)

(4) Deduce from (3) and from part (2) of Exercise 2.3.9 the following
theorem about finite generation of SL(n, R): if R is a Dedekind do-
main which is finitely generated as a Z-algebra, and if SL(2, R)at,  is
finitely generated, then SL(n, R) is finitely generated as a group
for all n 2 4. (As remarked in (3), this can be strengthened to
n 2 3.)

2.3.11. Exercise (Non-triviality of Mennicke symbols). The fol-
lowing famous example from [BassMilnorSerre]  shows there are Dedekind
domains with non-trivial Mennicke symbols. Let R = lk[x,  y]/(cc’  +y2 - l),
the ring of polynomial functions on the circle. This is a Noetherian integral
domain with field of fractions F = lR(z,  y)/(s2 + y2 - 1).

(1) Show that R is a Dedekind domain. (This part of the exercise
also appeared in Exercise 1.4.23. There are several possible argu-
ments, such as checking the original definition or showing that R
is integrally closed in F and applying Theorem 1.4.17.)

(2) Observe that and that for any n 2 2, the
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associated function S1 -t SL(n, R), defined via the formula

represents a non-trivial element of nl(SL(n,  R)) g rl(SO(n))  (see
Example 1.6.13 for the calculation of this fundamental group).

(3) Argue on the other hand that if g(x, y) E E(n, R), then the
matrix-valued function (x, y) I-+  g(x, y) E SL(n, R) must rep-
resent 0 in rl(SL(n,  R)). Hint: itís enough to check this for el-
ementary matrices, for which thereís an obvious homotopy to a
trivial loop.

(4) Deduce that thereís a homomorphism SKI(R)  --+ K?ë(Sí)  =
Z/(2) sending [x y] to the non-zero element of Z/(2).

(5) Show that in fact [x y] is an element of order 2 in SKI(R) by using
Theorem 2.3.6 to show [x y12 = 1.

4. Whitehead groups and Whitehead torsion
For applications of K1 to topology, just as in the case of the Wall ob
struction, the rings of interest are integral group rings ZG, where G is a
group which in the applications is the fundamental group of some topolog-
ical space. Note that Kl(ZG)  always contains certain ìobviousî elements,
namely the images of the units fg, g E G. We therefore focus attention on
the ìnon-obviousî part of K1 (ZG).

2.4.1. Definition. If G is a group, its Whitehead group Wh(G) is the
quotient of K1 (ZG) by the image of {fg : g E G} s (ZG)X.

Thus if G is the trivial group, Wh(G) = Kl(Z)/{fl}  is trivial by Corol-
lary 2.3.3. The rings ZG are in general quite complicated from the ring-
theoretic point of view; for instance, in what would appear to be the sim-
plest non-trivial case, if G is the cyclic group of two elements with generator
t, the map a+bt H (a+b, a-b) embeds ZG into the Cartesian product ZXZ
as what we called in Definition 1.5.1 the double D(Z, (2)) of Z along the
ideal (2). The units fl, ft of ZG correspond in D(Z, (2)) to f(1, 1) and
to f(1, -l), which are all the units of Z x Z, so Wh(G) = SK1 (D(Z,  (2))).
One can show that this vanishes (see Theorem 2.4.3 below), but to do this
from scratch is a bit involved, and this only handles the case of the simplest
non-trivial group! Thus the computation of Whitehead groups is usually
not easy. Nevertheless, the Whitehead groups of finite groups are now
thoroughly understood, and we refer the reader to [Oliver] for a complete
treatment. Here we content ourselves with a few elementary results.

Since it may not be apparent from Definition 2.4.1 that Whitehead
groups are ever non-zero, we begin with an example.
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2.4.2. Example. Let G be a cyclic group of order 5, with generator t.
We shall exhibit an element of infinite order in Wh(G). Let a = 1 - t -t-l
and note that

(1 - t - t-l) . (1 - t2 - P) = I- t - t-l - t2 + t3 + t - t3 + t-1 + t2
= 1,

so that a E (ZG) x. Under the homomorphism Q : ZG + @ defined by
sending t ++ e2rri/5, {fg : g E G} maps into the roots of unity and in
particular into the complex numbers T of absolute value 1. So b I--+ [o(b)/
defines a homomorphism from Wh(G) to lRT. Since

la(a) 1 = 11 - e2xi/5  - e-2xi/5  I = 11 - 2 cos T I x 0.4,

we deduce that (I: gives an element of infinite order in Wh(G).

The example may be generalized. Suppose G is any group and we are
given a homomorphism a : G -+ U(n), the unitary n x n matrices over
Cc. This group homomorphism clearly extends to a ring homomorphism
cy : ZG + A&(C), and thus induces a homomorphism

a* : K~(ZG)  -+ Kl(iK(c:))  2 Kl(c) g cx.
(Here we have used Morita invariance, Exercise 2.1.8.) But a(fG)  C u(n),
which maps to T in Ki(C) under the determinant. Hence the absolute value
of the determinant gives a homomorphism a, : Wh(G) + R$ which can be
used to detect elements of infinite order in the Whitehead group. Detecting
elements of finite order in Wh(G) is trickier and requires more sophisticated
methods. Nevertheless, the technique of Example 2.4.2 in fact detects all of
Wh(G) for many groups of practical interest, for instance for cyclic groups,
though we arenít prepared to prove this at the moment. To give an idea of
what can be done by brute force, we show that the Whitehead group of a
cyclic group of order two is trivial. (More powerful methods of computation
use the exact sequences of the next section and Chapter 4.)

2.4.3. Theorem. The Whitehead group of a cyclic group of order two is
trivial.

Proof. We have seen above that this is equivalent to proving that
SK1 (D(Z, (2))) vanishes. Suppose (A, B) E SL(n, D(Z,  (2))). This
means A, B E SL(n,  Z) and A - B = 0 mod 2. By Theorem 2.3.2,
A E E(n, Z). Thus clearly (A, A) E E(n, D(Z, (2))). Multiplying (A, B)
by (A, A)-ë, l,, the n x n identity ma
trix. So suppose A = 1, and B = 1, mod 2. If we could row-reduce
B = (bij) to the identity matrix by elementary operations involving adding
even multiples of one row to another row, then it would be clear that
(1, B) E E(n,  D(& (2))).
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So we try to apply the division algorithm as in the proof of Theorem
2.3.2. Let (&I,.. . , b,l) = (bl). Then bi is even and bii is odd. We show
that we can reduce B by elementary operations of the allowable sort so

that bii = 51, bi = 0, i.e., B =
fl *

( >0 B’ ’
Then we repeat the same

procedure with Bí, and so on. Eventually we come down to the case where
B is upper-triangular with flís on the diagonal and even entries above.
More allowable elementary operations now reduce B to a diagonal matrix
with flís on the diagonal, and since det B = 1, the number of -1ís is
even. To finish the argument, we only have to see what to do with the case

n=2, B =  (_d -4) (since after renumbering of the rows and columns

B is a direct sum of blocks of this type and of some identity matrix). In

fact the matrix ( -b_ -4 ) is not contained in the subgroup of SL(2,  Z)

generated by (i T) andby  (i f ); however,

((; f), (_d _4))=(1í-lM1,-Q-1
is elementary as a matrix over D(Z, (2)) by Corollary 2.1.3. So this com-
pletes the argument except for the step about reducing bii to fl and bi
to 0.

For this we note that if (bill  = 1, we can subtract even multiples of
the first row of B from the other rows and thereby reduce jbil to 0. If
(bl( = 0, then since @ii) + (bi)  = Z, we must have Ibill = 1. If \bli( > 1
and lbrl > 0, there are two cases, depending on which of these is larger. If
Ibill < Ibi(,  then by the division algorithm we can write br = qbll + T with
0 < (r( < /bill  (T- canít be 0 since b ii and bi are relatively prime). If q is
even, then we may reduce the size of lbil by adding even multiples of the
first row to the other rows. If q is odd, then r is odd and we write instead
bi = (q f l)bii + (r F bri). With the correct choice of the sign, we have
0 < Ir F bill < Jbril, but q f 1 is even so we can argue as before.

In the other case,  IbiiJ  > Jbil. Again we apply the division algorithm
and obtain bii = qbl  + T with 0 < (T( < (bi( and r odd. If q is even,
this means we can subtract even multiples of other rows from the first row
to reduce the absolute value of bii. If q is odd, we use the same trick as
before and write bii = (q f 1)bi  + (r F bi) with the sign chosen so that
0 < Ir F bil < lbil. Again we can subtract even multiples of other rows
from the first row to reduce the absolute value of bii. After repeating the
algorithm finitely many times, we eventually come down to the case where
Ibill  = 1. 0

The reader will presumably agree after seeing this proof that computing
Whitehead groups from scratch is not very practical. But at least we know
now that Wh(G) is trivial for some finite groups and infinite for others.
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In the rest of this section, we will give a brief exposition of the concept
of Whitehead  torsion, which provides the motivation for introducing the
Whitehead groups. Whitehead torsion gives an algebraic obstruction for
homotopy equivalences between certain topological spaces to be ìsimple,”
or of the ìobviousî sort. Since for present purposes a homeomorphism is
to be viewed as an ìobviousî sort of homotopy equivalence, Whitehead
torsion can be used to distinguish homotopy-equivalent spaces which are
not homeomorphic.

The most famous application of Whitehead torsion is the ìs-cobordism
theorem,î which is the main tool in classifying manifolds in dimension > 5.
So that the reader can appreciate the importance of the Whitehead groups
for topological problems, we will give the statement here. However, we
shall not discuss the proof as it will take us too far afield. For details, see
[MilnorHCT] for the simply connected case and [RourkeSanderson,  Ch. 6]
and [Kervairel] for the general case.

2.4.4. Theorem (ìs-cobordism  theoremî-Barden, Mazur,
Stallings). Let M” be a connected compact n-manifold of dimension 2 5
with fundamental group X, and consider the family 3 of all ìh-cobordisms”
built on M. These are connected compact manifolds Wn+l with exactly
two boundary components, one of which is M” and the other of which is
some other manifold Míì, such that W has deformation retractions onto
both M and Mí. There is a map r : 3 + Wh(r), called the ìWhitehead
torsion,î and r induces a natural one-to-one correspondence from 3í/  N to
Wh(n),  where N is the equivalence relation induced by homeomorphisms
W + W’ which are the identity on M. If W is the ìtrivialî h-cobordism
W = M x [0, 11, then r(W) = 1.

2.4.5. Corollary. If Mn is a connected compact n-manifold of dimension
2 5 with fundamental group x, and if Wh(r)  = 1 (for instance, if M is
simply connected or if r is of order 2), then every h-cobordism built on M
is homeomorphic (rel M) to a product M x (0, 11. In particular, the other
boundary component M’ is homeomorphic to M.

Remarks. We have been deliberately vague about what category of man-
ifolds we are dealing with here. In fact, the theorem is valid in all three
of the major categories of manifolds: topological manifolds and continuous
maps, PL manifolds and PL maps, and smooth manifolds and C” maps.
In the last of these, ìhomeomorphism”  in the theorem is to be interpreted
as ìdiffeomorphism.”

One of the main applications of the Corollary, as noticed by Smale, is
the proof of the PoincarC  conjecture: that in dimension n 2 6 (this can
be reduced to 5 with a little more work), any manifold C” homotopy-
equivalent to 5íî  is (topologically) homeomorphic to Sî. Furthermore,
the set of diffeomorphism classes of smooth homotopy spheres Cn is in
one-to-one correspondence with the group Diffe(Sî-l)  of isotopy classes
of diffeomorphims of Sî-l. To prove this, cut out two small disks from
Cî,  viewed as the ìpolar capsî of the homotopy sphere. What remains
is a manifold W” with the homotopy type of a cylinder and with two
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boundary components each homeomorphic  to S*-ë.  Since n - 1 2 5 and
Sî-l  is simply connected, the hypotheses of the Corollary are satisfied and
there is a homeomorphism (or diffeomorphism, if C is a smooth manifold)
from W to Sî-l  x [0, l] which is the identity on the boundary component
corresponding to the south polar cap. Hence we can glue the south polar
cap back in and deduce that Cn % B” Uf Bn, a union of two balls glued by a
homeomorphism (if weíre in the topological category) or diffeomorphism (if
weíre in the smooth category) f from Sî-1  to itself. In addition, itís clear
that any such f defines a homotopy sphere B” Uf Bî.  The equivalence class
of this homotopy sphere only depends on the isotopy class of f, since an
isotopy of fís gives an h-cobordism of the corresponding homotopy spheres
and we can apply the Corollary again. Conversely, if there is an orientation-
preserving diffeomorphism from B” Uf Bn to the standard sphere, it is
not hard to see that there must be an isotopy from f to the identity.
This explains why the smooth homotopy spheres are parameterized by
Diffe(Sî-l).  In the topological category, since B” is the cone on Sn-ë,
any self-homeomorphism f of Sî-l  extends to a self-homeomorphism F of
Bn by the simple formula

F(T2) = rf(z), r E [O, 11, 2 E F-l.

(This is the ìAlexander trick.ì) This yields a homeomorphism from B” Uf

B” to Sî,  proving the Poincare  conjecture.
The most elementary context in which to discuss ìsimplicityî of ho-

motopy equivalences is that of a finite relative CW-complex (X, A). In
other words, we assume A is a (Hausdorff) topological space and that X
is obtained from A by attaching finitely many cells, so that k-cells are al-
ways attached before (k + 1)-cells and the inclusion A - X is a homotopy
equivalence. We assume as well that A and X are both path-connected
and locally simply connected, with the same fundamental group 7r (com-
puted with respect to some basepoint zs in A). Let X and A be the
universal covers of X and A, which carry free actions of 7r by covering
transformations, and let R = Z&r be the group ring of *IT. In this situ-
ation, the relative homology groups H.(X)  A; Zr) = H.(_%,  A; Z) must
vanish. However, these may be computed from the cellular chain complex
C.(X)  A; i&r) = C.(_%,  A; Z), which is the direct sum of one free rank-one
R-module in degree k for each k-cell added in obtaining X from A. The
hypothesis that A - X is a homotopy equivalence means (by the White-
head and Hurewicz theorems) exactly that this chain complex of finite type
is acyclic. The Whitehead torsion of the homotopy equivalence will be an
invariant of the chain complex C.(X)  A; Z&r)  defined using one extra piece
of structure-a choice of basis elements for the free modules Ck (X, A; R).
Since the k-chain module contains one free rank-one R-module for each
geometric k-cell, there is a choice of a basis which is canonical up to an
element of {*g : g E n} for each cell. Namely, we choose a basis element
for the free cyclic submodule corresponding to each cell in X \ A, and it
only depends on a choice of orientation for this cell (hence the f sign) and
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on a choice of a lift of this cell to a cell in X \ A (hence the element of
the covering group). If there are only cells in two consecutive dimensions,
k - 1 and k, then once we have fixed our basis elements, the differential
dk : Ck(X, A; R) --+ &-1(X,  A; R) must be given by an invertible n x n
matrix over R, where n is the number of k-cells or (k - 1)-cells. (The num-
ber of cells must be the same in both dimensions since H.(X, A; Q) must
vanish, hence dimCk_r(X,  A; Q) = dimCk(X,  A; Q).)

2.4.6. Definition. The Whitehead torsion Q-(X,  A) of the homotopy
equivalence A -+ X is the image in Wh(n) of the matrix of dk in GL(n, R)
if k is even, or the inverse thereof if k is odd. Note that while the matrix
of dk is not well defined as it depends on the choice of basis, the torsion is
well defined since we have divided out by all possible ambiguities.

Now consider the general case where C.(X, A; R) is allowed to be any
acyclic chain complex of finite type of free R-modules, starting in degree 0,
with bases chosen for each chain module. By the argument in the proof of
Theorem 1.7.12, one may increase the ranks of the chain modules (adding
ìcancelling pairsî of cells in consecutive dimensions) so that Bk = zk =&f
kerdk is free for each k. Then dk defines an isomorphism Ck/Bk + Bk_i.
We choose bases for the non-zero Bkís,  taking the basis for Bo = Co to be
the basis we already have for Co, and idempotents pk : ck --+ Bk. Then
pk @3 d,+ : Ck --+ Bk ë$9  Bk_1  is given by an invertible matrix with entries in
R, and we let [dk]  be its class in Wh(n). (We can suppress the pk because if
pi is another projection from Ck onto Bk, then pk -p$ vanishes on Bk and
hence factors through dk. But the matrix of (pk + s o dk) @ dk differs from
that of pk @ dk by an elementary matrix, so their classes in Ri (R) are the
same.) The Whitehead torsion T(X, A) of the homotopy equivalence
A L) X is then defined to be the alternating product (since weíre writing
Whitehead groups multiplicatively) n, [dk](-l)k.

This is independent of the choice of bases for the Bkís,  since if we change
the choice of basis for Bk by an invertible matrix P, this multiplies the ma-
trix for dk+l by P and the matrix for dk by P-l, so that we get cancellation
in the alternating product. Notice also that this agrees with our previous
definition when C, = 0 for p # k, k - 1, since Bk = 0 and Bk-r = C&i,
so that we can use the same basis for Bk-r as for C&r. Note finally that
the fact that we had to stabilize to make all the Bkís  free, by adding on
ìcancelling pairsî of cells in consecutive dimensions, does not matter, since
this kind of geometric stabilization corresponds to passage to the limit from
GL(n, R) to GL(R) in the definition of K1.

There is a geometric definition that corresponds to the algebraic condi-
tion of vanishing torsion.

2.4.7. Definition. The homotopy equivalence A of X is called elemen-
tary, or given by an elementary collapse, written X Le A, if X is ob-
tained from A by attaching two cancelling cells in adjacent dimensions; in
other words, if for some k, X = (AUfBk-l)U,Bî.  Here f : Skp2 -+ A is the
attaching map for the (k - 1)-cell and we suppose g : Sk-l + (Auf Bkwl)
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maps one hemisphere identically onto the (k - 1)-cell and the other hemi-
sphere of Sk-l into A. This is illustrated in the following picture.

k-l

2.4.8. Figure: An elementary collapse

Note that if f collapses Ske2  to a point a, this just means that X = AV,Bk
and one can obviously collapse Bk to the attaching point a. In the general
case, f extends to a map f : Bkml  + A and X has a deformation retraction
down to A collapsing the k-cell down to f(Bî-l),  as one can see in Figure
2.4.8.

More generally, we say X collapses to A or A expands to X and
write X \ A or A /’ X if

and say the homotopy equivalence A - X is simple if it is in the equiva-
lence relation generated by \, i.e., if X /” X1 \ X2 /” . . . \ A (with all
the collapses and expansions fixing A pointwise).

2.4.9. Theorem (Geometric characterization of Whitehead tor-
sion). In the above context of a finite CW-pair (X, A) with A and X
Hausdorff, path-connected, and locally simply connected, and where the
inclusion A L) X is a homotopy equivalence, the inclusion is simple if and
only if T(X, A) = 1 in Wh(r).  In particular, if Wh(7r) = 1, for instance if
X and A are simply connected or r is of order 2, then every such homotopy
equivalence A - X is simple.

firthermore, for fixed A and a fixed element (Y E Wh(r),  there exists
a finite CW-pair (X, A) such that the inclusion A L) X is a homotopy
equivalence with 7(X,  A) = a.

Proof (Sketch). If X Le A, then 7(X, A) = 1 since the boundary map
in the cellular chain complex just corresponds to the 1 x 1 matrix (l), as
one can see from Figure 2.4.8. Next observe that if
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and all the inclusions are of finite CW-pairs and are homotopy equivalences,
then

r(X, A) = T(X, X,_l).+~~(X1,  A).

This follows from the fact that

C.(X, A; R) = C.(X, X,-I; R) @...@C.(Xl,  A; R)

and the matrix defining [&I for (X, A) differs from the direct sum of those
defining the [dk]  for the successive pairs (Xj, X,-l) by an elementary ma-
trix. It follows that the torsion vanishes if X \ A. The same principle
also shows the torsion vanishes if A of X is simple, for if for instance
X1 \ X 2 A and Xr \ Xs 2 A, then 7(X1, A) = 7(X1,  X)7(X,  A) =
7(X1,  X2)7(X2, A), so T(X, A) = 7(X2,  A). The general csse follows from
the same argument by iteration.

The existence part of the theorem is a direct construction. Given Q E
Wh(r),  realize it by a matrix B E GL(n, R). Then let

X1=AvP2v./S2,
n times

and construct X from Xr by attaching n 3-cells so that in the universal
cover the cellular boundary map is given by

B : C3(X,  A; R) 2 Rn + R” 2 C2(X, A; R).

This is possible since ~(zr, A) is a free R-module on n generators. Then
(X, A) obviously has the right torsion.

For the last part of the theorem, one needs to note first that if X’ differs
from X by a homotopy of the attaching maps for the cells rel A, then X can
be converted to Xí by a sequence of expansions and collapses (rel A). For
this itís enough to consider the case of X = A Uf,, B” and Xí = A Ufl Bî,
where

f : Sk-’ x [0, l] + A

is a homotopy of attaching maps. Merely define W = A Uf (B” x [0, l]),
which is defined by attaching Bk x [0, l] to A along Sk-l x [0, 11. Then
(W, A) is a finite CW-pair: one can first attach two k-cells to A via fe and
fr , then glue in a (k + 1)-cell Bk+l G Bk x [0, 11 via f on Sk-’ x [0, l] and
via the identity maps to the two k-cells along Bk x (0, 1). But W Le X
and W Le Xí since one can ìcancelî the (k + 1)-cell with either of the two
k-cells.

The hardest part of the theorem is to show that if r(X, A) = 1, then
A L) X is simple. For this the idea is to proceed in two steps: first to
modify X (rel A) by means of elementary expansions and collapses (which
as we have seen do not affect the torsion) so that all the cells added to A
to form X are in two consecutive dimensions k and k - 1, then to show
that each elementary matrix operation applied to

dk : Ck(X, A; R) g R” + R” g C&1(X, A; R)
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has a geometric analogue. Here we only deal with the last part; see [Rourke-
Sanderson] or [Cohen] for the full argument. Suppose Xr is obtained from
A by attaching n (Ic - 1)-cells, and X is obtained from Xi by attaching n
k-cells via an elementary matrix eij(o). Using the observation about ho-
motopies of attaching maps, one can change X by expansions and collapses
so that for m # j, the m-th &cell is glued onto the m-th (Ic - 1)-cell as in
Figure 2.4.8, and the pair of cells collapses down to A. The j-th k-cell  is
glued onto both the j-th (Ic  - 1)-cell and the i-th (k - 1)-cell. But now since
the i-th (Ic - 1)-cell can be collapsed down to A (along with the i-th k-cell
glued onto it), the attaching map for the j-th k-cell  can be homotoped
through A to ìunhookî this cell from the i-th (k - 1)-cell. So after further
expansions and collapses, we can assume each k-cell is glued onto exactly
one (Ic  - 1)-cell as in Figure 2.4.8, and the cells can be collapsed in pairs
down to A. Cl

The concept of Whitehead torsion can be carried over from inclusions
A L) X to general homotopy equivalences f from one finite (connected)
CW-complex Xi to another, Xs. To do this, if f is cellular, form the
mapping cylinder X = Cf = Xi x [0, l] Uf X2 (here we use f to attach Xr x
{ 1) to X2). Since we assumed f is cellular, this is a finite CW-complex, and
since f was assumed a homotopy equivalence, it has deformation retractions
down to the subcomplexes A = X1  x (0) and X2. We define r(j) =
T(X,  A). Note that if f is actually an inclusion of a finite CW-subcomplex,
then the pair (X, A) is an expansion of the pair (X2,  Xl) and so r(f) agrees
with our existing definition of r(Xs,  Xl). Furthermore, if two homotopy
equivalences fe and fi : Xi --+  Xs are homotopic to one another, then Cf,
is obtained from CfO by a homotopy of attaching maps, and hence by the
proof of Theorem 2.4.9, their torsions are the same.

This makes it possible to define r(f) for a homotopy equivalence f which
isnít cellular. We homotope f to a cellular map fc (this is possible by the
ìcellular approximation theoremî) and define 7(f) = r(fc). The result is
well defined since if we homotope f to a different cellular map fi , then fc N
fi and so r(fr)  = r(fe). It also turns out that if f is a homeomorphism,
then r(f)  = 1, but this is a hard theorem [Chapman] unless f is cellular,
in which case itís a triviality. (If f is a cellular homeomorphism, then Cf
is cellularly isomorphic to Xr x [0, 11, which clearly collapses to Xr .)

For further discussions of the various guises and applications of White-
head torsion, see [MilnorWT]  and [Weinberger, Ch. 11.

2.4.10. Exercise. Extend the proof of Theorem 2.4.3 to show that the
Whitehead group of any elementary abelian  2-group  (product of finitely
many cyclic groups of order 2) is trivial.

2.4.11. Exercise (Behavior of Whitehead torsion under prod-
ucts). This exercise is in some sense the Kr-parallel  of Exercise 1.7.18.

(a) Suppose (C,ë,  dí)  and (Ci, dí) are complexes of finite type of based
free R-modules and S-modules, respectively, with Ci acyclic (so
that r(C,ë)  is defined). Show that the total complex of the double
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complex Ci @, 17: of free R C&J  S-modules,

i

cj= 6 C;_l,EJ3aC;,
k=-co

d.j = d1 @id + (-l)pid  @ d2 on Cp’  @z Ci

is also based and acyclic.
(b) Suppose that in the situation of (a), 5’ = Z. Show that

T(C)  = @)x(C2),

where x(Cî)  E Ko(Z) = Z.
Cc)

(4

Suppose A L) X is a homotopy equivalence satisfying the hypothe-
ses of Theorem 2.4.9, so that its torsion is defined, and let Z be a
finite connected and simply connected CW-complex. Show using
(b) that A x 2 L) X x 2 is also a homotopy equivalence satisfying
the hypotheses of Theorem 2.4.9, and that 7(X x 2, A x 2) =
T(X, A)x(Z). Thus if 2 = S3, deduce that A x 2 - X x 2 is
always simple.
Show also that in the situation of (a), if x(Cî)  = 0, then 7(C) = 0
regardless of what S is. Deduce that if 2 = Sí,  then Ax2 - Xx2’
is always simple.

5. Relative K1 and the exact sequence
As with Ko, we want to be able to relate K1 of a quotient ring R/I to
Kl(R) and to some invariants of the ideal I (and the way it is embedded
in R). In this section, we will define the relative group K1 (R, I) and show
that the three-term exact sequence of Section 1.5 extends to a six-term
exact sequence relating Ko and K1. This will provide us with some more
computational tools for computing K-groups.

2.5.1. Definition. Let R be a ring (with unit) and let I be a two-sided
ideal in R. We define D(R, I) as in 1.5.1 and define the relative Kl-group
of the ring R and the ideal I to be

Kl(R,  1) = ker ((PI), : Kl(D(R,  1)) -, Kl(R)) .

Note that this is the exact parallel of Definition 1.5.3. Since itís conve-
nient to have another definition closer in spirit to Definition 2.1.5, we now
prove a relative version of Whiteheadís Lemma and rework the definition
of K1 (R, I) into a more usable form.

2.5.2. Definition. Let R be a ring (with unit) and let I be a two-sided
ideal in R. We define GL(R, I) to be the kernel of the map GL(R) -+
GL(R/I)  induced by the quotient map R --f R/I.  We define E(R, I) to be
the smallest normal subgroup of E(R) containing the elementary matrices
eij(a), a E I. Note that since each such elementary matrix is congruent to
the identity matrix modulo I, E(R, I) C GL(R, I).



5. Relative K1 and the exact sequence 93

2.5.3. Theorem (Relative Whitehead Lemma). Let R be a ring
(with unit) and let I be a twosided  ideal in R. Then E(R, I) is normal in
GL(R, I) and in GL(R),

GL(R, I)/E(R,  I) = Kl(R, I),

and GL(R, I)/E(R, I) is the center of GL(R)/E(R,  I). Furthermore,
E(R, I) = [E(R), E(R, 01 = FL(R), EC& 01.

Proof. The first assertion follows from the fact that if A E GL(n, R)
and B E E(n, R, I), then

(ììuî-l  y)=(; ;1) (f ;) (a’ ;).

Since
(: $1)

is elementary by Corollary 2.1.3 and by its definition

E(R, I) is normal in E(R), the right-hand side lies in E(R, I).
Next suppose (Al, AZ) E GL(D(R,  I)) c GL(R x R) and maps to

the identity element of Kr (R) under (PI),. This means of course that
Al E E(R). But then (Al, Al) E E(D(R, I)), since if Al = &eikj,.(uk),

(Al, Al) = neiljk(akl  4.
k

Multiplying (Al, AZ) by (Al, Al)-’ changes it to the form (1, B) with B E
GL(R) but without changing its class in Kr. Since (1, B) E GL(D(R,  I)),
B = 1 mod I and B E GL(R, I). Conversely, every B E GL(R, I) defines
a class in GL(D(R,  I)). So to show GL(R, I)/E(R,  I) 2 Kl(R, I), we
need only check that if B E GL(R, I), then (1, B) E E(D(R, I)) if and
only if B E E(R, I). For one direction, note that E(R, I) is generated by
matrices of the form Seij(a),!Y1  with a E I and S E E(R). But

(1, Seij(a)S-l)  = (S, S)eij(O,  u)(S-l,  S-l)

and all three factors on the right lie in E(D(R, I)). For the other direction,
suppose

(h B, = fi %jk  (uk7  bk) e E(D(R,  I)), n eibjh  (uk) = 1 E E(R).
k=l k

Note that for each k,

eikjk(uk7 bk) = eihjk(uk7  uk)eikjk(o,  bk - uk) = (Sk, Sk)& Tk),

where

Sk = %jk(ak) E E(R), Tk = eikjk(bk  - ak), b k  - ak E I.
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Then we have

k

= (1, (s,T,s,1)(sls,T2s,1s,1)
. . . (S,& . . . S,T$y *. . S,lS,l))  )

since Si S2 . . . S, = 1, and weíve written our element B as a product of
generators of E(R, I).

Since E(R, I) is normal in GL(R, I) and in GL(R),  [E(R), E(R, I)] C
[GL(R), E(R, I)] C E(R, I). Equality holds since E(R,  1) is generated by
matrices of the form Seij(a)S-’  with a E I and S E E(R), and

Seij(e)S-’  = [S, eij(e)]eij(a>  = [S, eij(a>][eik(I>,  ercj(u>]

E [E(R), JW, 41, k # i,j.

It remains only to show that GL(R, I)/E(R, I) is the center of GL(R)/
E(R, I). Note first that if A E GL(R, I),

and

and

A
0

since A - 1 has its entries in I,

lie in E(R, I), hence this calculation shows that

So GL(R, I) and GL(R) commute modulo E(R, I). On the other hand, the
center of GL(R)/E(R,  I) must map (under the homomorphism induced by
the quotient map R ++ R/I) to the center of GL(R/I),  which is trivial. (A
central matrix must be diagonal with equal diagonal entries, but since for
a matrix in GL all but finitely many of the diagonal entries are 1, GL(S)
has trivial center for any S, in particular for S = R/I.) Hence the center of
GL(R)IE(R,  1) is contained in the kernel of the map to GL(R/I),  which
is GL(R, I)/E(R,  I). Cl

Weíre now ready for the main theorem of this section, which is an ex-
tension to the left of the exact sequence of Theorem 1.5.5.
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2.5.4. Theorem. Let R be a ring and I C R an ideal. Then there is a
natural exact sequence

Kl(R, I) + K1(R) 3 Kl(R/I)  2 Ko(R,  I) + Ko(R) 3 Ko(R/I),

where q* is induced by the quotient map q : R --H R/I and the maps
Kj (R, I) + Kj (R) are induced by pz : D(R, I) + R.

Proof. For simplicity of notation in the proof, if A is an element of R or
a matrix with entries in R, we will often denote q(A), the corresponding
matrix over R/I, by A.

We begin by proving exactness of

Kl(R, I) + Kl(R)  3 Kl(RII).

We have seen that any class in K1 (R, I) is represented by

(1, B) E GL(D(R,  I)) 2 GL(R x R)

with B E GL(R, I), so B = i and q,[B] = 1. Conversely, if B E GL(R)
and q,([B])  = 1, then B E E(R/I).  Now if b E R/I, it comes from some
a E R and eij(&)  = q(eij(a)).  So each generator of E(R/I)  lies in the
image of E(R) and hence E(R/I)  = q(E(R))  (this argument was used
in Lemma 1.5.4). So B lifts to a matrix C E E(R), and q(BC-l)  = 1.
Then (1, BC1)  E GL(D(R,  I)) and [B] = [BC-ë1  in Kl(R) comes from
[(l, BC-l)]  E Ki(R,  1).

Next we have to define the boundary map K1 (R/I) -r?, Ko(R, I) and
prove exactness at Kl(R/I) and at Ko(R,  I). Theorem 1.5.5 will then
complete the proof. The definition of the boundary map is based on what
in topology is called a ìclutchingî construction. Given A E GL(n, R/I)
(the image of some matrix A E M,(R),  not necessarily invertible), we use
A to ìclutchî together two free modules to get a projective module over
D(R, I). In other words, let

R” xA R” = { (2, y) E R” x R” : G = k/i}.

(We are thinking of z and y as 1 x n matrices.) Make this into a module
over D(R, I) by letting

This makes sense since ii = i2, hence

q(r2y) = f2j_j = iI = q(rlz)A.

Note that if A = q(A) with A E GL(n, R), then

(CC, y) ++ (zA, y) E R” Xi R” 2 D(R, I)n



96 2. K1 of Rings

sets up an isomorphism from R” XA Rn to a free module of rank n. In
particular, since we have seen that E(R/I)  = q(E(R)),  R” XA R” is free
of rank n if A. is elementary. For a general A E GL(n, R/I), we can
always.choose  B E GL(n, R/I) such that A@B is elementary (for instance,
B = (A)-’  works by Lemma 1.5.4 or Corollary 2.1.3), and then

(Rî xA Rî) @ (Rî xs Rî) E R2” xAeS R2” Z D(R, I)2n,

so that R” XA R” is a direct summand in a free module, i.e., a projective
module. Thus it makes sense to define

a[/i] = [Rî xA Rî] - [D(R,  I)n] E Ko(D(R,  I)).

We will show that d is in fact a homomorphism Kr (R/I) + &(R, I).
It maps into &(R, I) = ker(pr),  since

bd*(+il)  = (n)e([Rn XA Rî])  - (m),([D(R,  I)n]) = [Rî] - [Rî] = 0.

It is additive on direct sums of matrices since

(Rî x/i Rî) @ (Rî xB Rî) % R2” xABh R2n,

and it sends classes of elementary matrices to 0 since if A is elementary,

a[A] = [Rî xA Rî] - [D(R, I)ì] = [D(R, I)n] - [D(R, I)ì] = 0.

More generally, it is well defined on classes in Ki since if A = &’ with
B E E(R), then

(5, y) H (zB,  y) E R” xc. R”

sets up an isomorphism from R” XA R” to Rn XC Rî. Thus we obtain a
well-defined homomorphism Ki (R/I) + &(R,  I). Furthermore we have
already seen that the composite

is zero. The composite

Kl(R/I) : Ko(R,  I) + Ko(R)

is zero since

(~2)4+41)  = b2L([Rn x~ R"]) - (pz)*([D(R, I)n])  = [Rî] - [Rî] = 0.

It remains only to check that ker d C q* (K1 (R)) and that

ker{(m)* : Ko(R, I> 4 Ko(R))  G a(Kl(R/I)).



5. Relative K1 and the exact sequence 97

Suppose a([A])  = 0. Th’is means that R” XA R” is stably isomorphic to a
free module of rank n, or that for some m,

R”  xA R” @ D(R, I)m = D(R, I)n+m.

After replacing A by A $ l,, we may assume that in fact

R” xA R” E D(R, I)ì.

Choose an isomorphism

cp : D(R, I)î = R” Xi R” + R” Xi Rî.

Then we can define matrices B,C E M,(R)  by (ejB, ejC> = ëp(ej,  ej),
where ej is the j-th standard basis vector for Rî,  or in other words by
taking the j-th rows of B and C to be the first and second coordinates
(respectively) of cp(ej,  ej). Then by linearity, cp(u, V) = (uB,  UC) for any
(u, V) E D(R, I)î = R” xi Rî,  and since for such u and V, ti = ti, we have
BA = 6í.  Since ëp  is invertible, it is clear that B and C are invertible with
ëp-ë(z,  y) = (zB_ë,  yC_ë)  for (2, y) E R” XA Rî. Thus A = q(B-lC)
and so kera C q*(Kl(R)).

Finally, suppose one has a class in Ko(R, I) going to 0 in Ko(R). This
means we have a class in Ko(D(R, I)) going to 0 under both (pi), and
(~2)~.  Represent the class by [P] - [D(R,  I)n],  where P is a projective
D(R, Q-module such that (pr ), (P) and (pz)*(P) are stably isomorphic to
Rî.  If necessary, we may add on a free module of rank Ic to P and replace
n by n + Ic so that (pi>*(P)  and &s)*(P) are both actually isomorphic to
Rî. Then it is clear that P is of the form R” x A Rî,  and thus

PI - MR, 4í7  = a([&.

This completes the proof. 0

2.5.5. Corollary. (Cf. Exercise 1.5.11.) Let R be a ring, I G R an ideal
such that the quotient map q : R + R/I splits (in other words, such that
there exists a ring homomorphism s : R/I + R with q o s = idR,I). Then

o -+ K,,(I) --+ Ko(R) -+ Ko(RII)  -+ 0

is split  exact.

Proof. Clearly s* is a splitting for q*, by functoriality of Ko. We need
only show that Ko(I) ---f  Ko(R)  is injective.  But this follows from the fact
that s* : Kl(R/I)  + Kl(R) is a splitting for q* : Kl(R) -+ Kl(R/I),  hence
d = 0 in the exact sequence of 2.5.4. q



98 2. K1 of Rings

2.5.6. Examples. (Cf. Examples 1.5.10.)
(a) Suppose R = Z and I = (m), where m > 0. Then ICI(R) g {fl}

by Corollary 2.3.3, while Ki (R/I) was computed in Exercise 2.2.7.
It is thus possible to compute Ks(1)  from the exact sequence. For
example, suppose m = 2. Then R/I is the field of two elements
and (R/I)X = (1). The exact sequence therefore becomes

K1(R, I) + {fl} + (1) 3 K,,(l) --+ Z 5 Z,

and J&,(1)  = 0. At the same time, we see that Kl(R, I) must
surject  onto {fl}.

Next, suppose m = p is an odd prime. Then R/I is the field lFP
of p elements and (R/I) x is cyclic of order p - 1. Hence the exact
sequence becomes

K1(R, I) + {fl} + ìp” 2 Ks(l) --f  Z 5 Z,

and &(I) g F~/{fl}, which is cyclic of order q. In this case,
the map Kl(R, I) -+ {fl} is trivial.

As a third example, suppose m = 2î is a power of 2 with T > 1.
Then R/I is a local ring with maximal ideal of index 2, and (R/I)X
is an abelian  group of order 2í-l.  Furthermore, fl are distinct
elements of this group. For instance, if m = 8, then since any odd
square is = 1 (mod S), all elements of (R/I) ’ are of order 2 and
(R/I)X is a Klein Cgroup  (Z/(2)  x Z/(2)). By Corollary 2.2.6,
Ki (R/I) E (R/I) ë. The exact sequence has the form

Kl(R, I) --+ {fl} -+ (R/I)X 2 &(I) + Z 5 Z,

and &(I) g (R/I)X/{fl}, an abelian  group of order ZTW2  which
is not necessarily cyclic. Again in this case, the map Kl(R, I) +
{fl} is trivial.

(b) Suppose G is a cyclic group of prime order p, say with generator
t, and R = ZG is its integral group ring, which may be identified
with Z[t]/(t*  - 1). If 6 = e2rri/*, a primitive pth root of unity, and
if S = Z[c], then S is the ring of integers in the cyclotomic field
Q(E), hence is a Dedekind domain by Theorem 1.4.18. There is a
surjective  homomorphism R ++ S defined by sending t +-+  <. Since
the cyclotomic polynomial f*(t) = P-l + . . . + t + 1 is irreducible,
any polynomial g(t) E iZ[t]  with g(c) = 0 must be divisible by f,.
In particular, anything in the kernel I of the map R + S must be
a multiple of fp. Note that as an element of R, fi = pfp. Thus
I in this example is, as a ring without unit, the same as in the
last example if we specialize to the case m = p. In particular,
Ko(R, I) = Ko(Z, (p)) % E?g/{&l}, which is cyclic of order &$
by (a). We thus have an exact sequence
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If p = 2, then Z[<]  = Z and this specializes to

Ki(R,  I) --+ Ki(ZG)  + {fl} 5 0 -+ &(ZG)  + 0.

Thus &(ZG)  = 0 in this case, and of course we already know
by Theorem 2.4.3 that Ki(ZG)  g {fl} x G, so that the map
Ki(ZG)  + Ki(Z)  is surjective with kernel of order two.

If p is an odd prime, the cyclotomic field Q(E)  has no real embed-
dings and 9 conjugate pairs of complex embeddings. Thus by
the Dirichlet Unit Theorem (Theorem 2.3.8),  (Z[c])” is the prod-
uct of the group of roots of unity in Q(t), which is of order 2p, with
a free abelian  group of rank q - 1 = 9. Granted the fact that
SK1 (Z[<])  vanishes (quoted but not proved in Section 2.3, though
we know this at least for p = 3 by Theorem 2.3.2),  we obtain the
exact sequence

Ki(R,  1) + Wh(G) x {fl} x G -+ Ze x {fl} x G

3 IF; /{fl} -+ k&G) + r?ëo(Z[~])

or

(2.5.7) 2 F;/{fl} -+ ks(ZG) --) &(Z[<]).

If we donít assume the vanishing of SKi(Z[J]), then Ze should
be multiplied by this group, which we at least know is a torsion
group (by Corollary 2.3.7). This is almost, but not quite, enough
information to compute &(ZG),  the group in which in Wall finite-
ness obstruction lives, and the Whitehead group Wh(G). To com-
plete the calculation, we need some information about the map
Z P--3a2 + lFz /{fl}  and also need to extend the exact sequence one
step to the left and one step to the right. The extension to the
right involves K-1, to be discussed in the next Chapter, and the
extension to the left involves K2, to be discussed in Chapter 4.

2.5.8. Lemma (Rim). Let R = ZG, G a cyclic group of order p, an
odd prime, and let R/I = Z[<],  < = eanilP (as in Example 2.5.6(b) above).

Then the boundary map Zq a+ F~/{fl} in the exact sequence (2.5.7)
is surjective.

Proof.  Consider the commutative diagram

If11 - v a- Ko@,  (P>> - 0,
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where the vertical arrows are induced by the homomorphisms ZG + Z
sending t H 1 and Z[<] ++ F, sending 1 I+ 1, < H 1. Since I + (p), the
vertical arrow Ko(R, I) -+ Ko(Z, (p)) % lFc/{fl}  is the excision isomor-

phism. Thus a diagram chase shows that Kl(Z[<])  2 Ko(R,  I) is surjective

if the vertical arrow Kl(Z[<]) 3 lFp” is surjective. Let 1 5 Ic 5 p - 1, so
that k represents an element of lF;, and suppose kl = 1 (mod p). Let

c”  - 1u=-fy+-ë+...+<+I,

2, - s _ (CîY  - I
L$k - 1 = (EkF1 + . . . + (Cî)  + 1.

Then uw = 1 in Z[[] and u reduces modulo p to k, which shows K1 (Z[l]) 5
&(R, I) is surjective. Furthermore, if 2 < k 5 p - 2, then u is of infinite
order in Z[[lx since

in this case (5 and e-l are closer to 1 than the other primitive pth roots

of l), so z+ -% F,x/{fl} in the exact sequence (2.5.7) is surjective. 0

2.5.9. Corollary. If R = ZG, G a cyclic group of order p, an odd prime,
then Wh(G) surjects  onto Zq, and &(ZG) injects into the class group

Proof This follows immediately from the exact sequence (2.5.7). 0

In the last part of this Section, we will now discuss how to find explicit
generators for Kl(R,  1) for some rings of interest in number theory and
topology. This will help us to get more explicit information about the
size of this group, and hence to sharpen the information about Whitehead
groups in Corollary 2.5.9. The discussion will parallel Theorems 2.3.5 and
2.3.6.

2.5.10. Proposition. (Cf  Proposition 2.2.1.) Let R be a commutative
ring and I C R an ideal. Then Kl(R, I) splits canonically as

{u E RX : a E 1 mod I} x SKl(R,  I),

where SKl(R,  I) = SL(R, I)/E(R, I) and SL(R,  I) is by definition

SL(R) II GL(R,  I).

Proof. Clearly the determinant gives a split surjection

det : GL(R,  I) -+ {a E RX : a E 1 mod I}

with kernel SL(R, I). Now divide by E(R, I) and use Theorem 2.5.3. 0
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It is immediately evident that when R is commutative, the first part of
the exact sequence of Theorem 2.5.4 splits into two exact sequences

l+{a~RX:a~l mod I} --)  RX ---f (R/I)X,

SKl(R,  I) 4 SKI(R)  + SKl(R/I).

2.5.11. Theorem. (Cf. Theorem 2.3.5.) Let R be a Dedekind domain
and I G R an ideal. Then SKl(R,  I) is generated by the image in SL(R, I)
of SL(2, R, I).

Proof. The method of proof of Theorem 2.3.5 works here as well provided
we can show that given A = (aij) E SL(n,  R, I) with n 2 3, we can find
ti E 1, 1 5 i 5 n - 1, such that

R(w + tla,l)  + . . . + R(a,-1  I + tn--lanl)  = R.

(Note that adding tix (last row) to the i-th row of A corresponds to mul-
tiplying A by a matrix in E(R, I), hence gives a new matrix Aí with the
same class in SK1 (R, I). Then once we have arranged to have clail +. . . +
c,-lak_-l  1 = 1, we can subtract cianlx  (i-th row of Aí) from the last row
(this is also an allowable elementary operation since a,1 E 1-recall Aí E 1
mod I) and kill off the entry in the (n, l)-slot.)

By assumption that A = (aij) E SL(n,  R, I), we have all s 1 mod I,
ai1 E I for i > 1, and Rail + . . . + RanI = R. But then also

Rail +. . . + Ra,_l  1 + Rail = R,

since if (a,l) is relatively prime to (all,. . . ,a,_1 I), so is its square. By
the proof of Theorem 2.3.5, we can then find t: E R with

Wall + t:ail) +. . . -t R(a,-l  I + t,_laz,)  = R.

Set ti = t!,a,l and weíre done. 0

2.5.12. Theorem. Let R be a commutative ring, I C R an ideal.

(1) For a, b E R with Ra + Rb = R, a = 1 mod I, b E I, choose c,
d E R with c E I, d = 1 mod I, and with ad - bc = 1. (This is
possible since if adí - bc’ = 1, then automatically d’ G 1 mod I,
and abdí - bíc’  = b, hence adí - cí(abd’  - bící)  = ad - bc = 1
with d = dí(1  - bcí) = 1 mod I, c = -bc” E I.) Then the

classin SKl(R,  I )  o f  E i
( >

E SL(2, R, I) is independent of the

choice of c and d, hence can be denoted [a b]l without possibility
of confusion. Such an element of SKl(R,  I) is called a relative
Mennicke symbol, and if R is a Dedekind domain, all elements
of SKl(R,  I) are of this form.
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(2) [a b]~ = 1 if a E RX, a G 1 mod I, b E I.
(3) For a, b E R relatively prime with a E 1 mod I, b E I, the relative

Mennicke symbols satisfy the relations [a b]l = [a + bX b]l for any
X E R, and [a b]l = [a b+a A] f1 or any X E I (note the asymmetry).

(4) If a and b E R are relatively prime with a E 1 mod I, b E I, and
b-f1 moda, then[a  b]l=l.

(5) When both sides are defined, [a bl]l . [a b2]1 = [a blbs]l.

Proof. (1) The proof that [a b] 1 is well defined is the same as the cor-

responding step in the proof of Theorem 2.3.6. If

SL(2, R, I), then

and this lies in E(R, I) since cdí - cíd E I. The Mennicke symbols clearly
exhaust the image of SL(2, R, I) in Kl(R, I), so by Theorem 2.5.11, they
exhaust SKl(R, I) if R is a Dedekind domain.

(2) is clear from the fact that if a E RX and [a b]l  is defined, then

(; .5)=(; a!l) (; .,,)>
and both factors on the right lie in E(2, R, I), the first by the proof of
Theorem 2.5.3, and the second since b E I, hence a-lb E I.

For (3))  suppose that E SL(2, R, I). If X E I, then

E(2, R, I) and

so [a b]l = [a b + aX]I.
Furthermore, for any X E R,

and since [E(R), E(R, I)] c E(R, I), this shows [a b]l = [a + bX b]l.
To check (4), assume b = fl + ta, t E R, and let q = 1 - a E I. Then

by (3)7

[a b]l = [a b- ba]r  = [a bq]r

= [a bq - a(tq>]r  = [a f q]r = [a + q f q]I
= [l f q]1 = 1.
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For (5), assume that [a bill and [u bz]l are defined and that Rblbz  +

R a = R .  Thenif (l ii) and (i 2) lieinSL(2, R, I),

is conjugate to

and

( 1 0
= -c1dz

b2
; ---p) (2 5 +t)

(

ad2 - b2c2 bl 0
= cl&-adz  + 1 - c2b2)  dl - blcld2 -c1c2

b2(adz - b2c2 - 1) bib2 a )

=

(

1 bl 0
0 dl - blcld2  -c1c2 .
0 bib2 a )

Since bl E I, we may eliminate the -bl from the first row, and with d = dl-
blcld2 E 1 mod I, [a b ] [ b ]r 1 a 2 1 is represented by the class in SKl(R,  I)

of (i b;2 -c;c2) and thus of its conjugate by the elementary matrix

0 01

( )

0  1 0 .
-1 0 0
Finally, we compute that

so that [a bl]l[a b2]1 = [a blb2]1. 0

2.5.13. Corollary. (Cf Corollary 2.3.7.) If R is a Dedekind domain and
R/P is a finite field for each non-zero prime ideal of R, and if I is a proper
ideal of R, then SKl(R, I) is a torsion group.

Proof. Consider a relative Mennicke symbol [a b]l.  If a E RX, [a b]l = 1
by (2) of the theorem. If not, (u) is a non-zero proper ideal of R and so is
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a product of non-zero prime ideals Pj by Theorem 1.4.7. Since each R/Pj
is finite, it follows that R/( a is finite (cf. the beginning of the proof of)
Theorem 1.4.19). Since the image of b in R/(a) is a unit and (R/(cL))~  is a
finite group, there is some k with b” E 1 mod (a), and then by (4) of the
theorem,

[a blk = [fZ bî]  = 1.

So [a b]l has order k in SK1 (R, I). But relative Mennicke symbols generate
SKl(R, I) by (1) of the theorem. êi

2.5.14. Proposition. Let R = Z[t]/(tP - 1) and I = (tp-l  + . . . + t + 1)
be as in Example 2.5.6(b), so that R is the group ring of a cyclic group
G of prime order p and R/I g Z[<],  [ = eaTi/p,  the ring of integers in the
cyclotomic field Q(E).  Then SKl(R, I) g SKl(Z, (p)).

Proof. Consider the homomorphism cp : R -+ Z defined by t I-+ 1. It
is obviously surjective and sends I onto (p). We will show it induces an
isomorphism SKl(R, I) 2 SK1(Z, (p)). For surjectivity,  suppose A E
SL(n, Z, (p)). Then A E SL(n, Z) and A - 1 = 0 mod p, so A - 1 = pB
with B E M(n, Z). Let g(s) = det(1  + sB). Then g is a polynomial
with integer coefficients and g(0) = g(p) = 1, so we can write g(s) =
1 + s(s - p)h(s) for some h. Since f$ = pfp in R, g(fp) = 1 and thus
1 + fp(t)B lies in SL(n, R, I) and maps to A under ëp.  This shows cp* is
surjective on SKI.

Now suppose A E SL(n, R, I) and [A] H 1 in SKI@, (p)). This means
q(A)  lies in E(Z, (p)). First we show that the map E(R, I) + E(Z, (p))
is surjective; this will imply that after changing A within the same class
in SKI, we may suppose v(A)  = 1. Now a typical generator of E(Z, (p))
is Ceij(pk)C-l,  where C E E(Z), k E Z. We may lift C to a matrix in
E(R) by the argument in the beginning of the proof of Theorem 2.5.4, and
we may lift eij(pk) to eij(fP(t)k), so each generator of E(Z, (p)) lifts to an
element of E(R, I), hence every element may be lifted.

Thus we may assume p(A) = 1. But the kernel of cp is the augmentation
ideal of R, which is generated by t - 1, so A - 1 mod (t - 1). On the other
hand, we were assuming A = 1 mod fp(t).  These two facts together give
A = 1, since (t - 1) n I = 0 in R. So ëp* is also injective. Cl

2.5.15. Corollary. If G is a cyclic group of odd prime order p, then the
quotient of Wh(G) by its torsion subgroup is free abelian  of rank exactly
p--3

2 .

Proof. By Proposition 2.5.14, SKl(R, I) c SKI@, (p)), which by Corol-
lary 2.5.13 is a torsion group. Substituting in (2.5.7),  we get the desired
result. q

Remark. Note, by the way, that the proof of Corollary 2.5.15 is ëLelemen-
tary” in that it does not depend on the vanishing of SKl(Z[<]). However,
to show that the torsion subgroup of Wh(G) is exactly the group of roots
of unity in Z[<],  which has order 2p, one needs to prove that SKl(Z[<])  = 0
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and that the image of SKl(Z,  (p)) in the Whitehead group vanishes. In
fact, one can even show that SKl(Z,  (p)) = 0.

2.5.16. Exercise. Show that if G is a finite abelian  group containing an
element of order m > 4 with m # 6, then Wh(G) is infinite. Hint: m
must be divisible by 8, by 9, by 12, or by some odd prime p > 5. First
show that for a cyclic group of one of these orders, there is a unit in the
integral group ring which under some representation of the group maps to
a complex number of absolute value > 1. The proof of Lemma 2.5.8 and
Corollary 2.5.9 basically take care of the case of a cyclic group of order
an odd prime p 2 5. Thus you need to find units of infinite order in the
group rings of cyclic groups of orders 8, 9, and 12. Then reduce the general
case to these particular cases using the structure theorem for finite abelian
groups.

2.5.17. Exercise [Mennicke]. Show that for any m > 1, SKl(Z,  (m))
= 0. Here is an outline. The proof requires use of Dirichletís theorem on
primes in arithmetic progressions [SerreCourseArith,  §VII.4],  which
asserts that if a, b > 0 and (a, b) = 1, then the arithmetic progression
a + lcb, k E Z, contains infinitely many primes.

Let R = Z, I = (m). Choose any element [a b]l of SK1 (R, I). We will
show it is the identity. First use Dirichletís Theorem to choose a prime
p E a mod b. Then if 4 is Eulerís phi-function, we have 4(p)  = p - 1, and
[a bll = [p bll has exponent dividing p - 1 by the argument of Corollary
2.5.13. Let ql,. . . ,qr be the odd prime factors of p - 1. Using Dirichletís
Theorem again, choose primes pl and p2 with

pl E -p mod b , mod q1, . . . , mod q,-,

pz = -1 mod b , mod q1, . . . , mod qr.

Let aí = plpz. Show that [u b]l = [aí b]r; hence it has exponent dividing
4(aí)  = (~1 - ~)(Pz  - 1). Show that this cannot have any qi as a factor,
and hence that the exponent of [u b]l canít have an odd prime factor and
so is a power of 2.

To finish the argument, first suppose b is not a multiple of 4. Then
applying Dirichletís Theorem at the beginning modulo 4b instead of modulo
b, we can also suppose p E 3 mod 4. This means 9 is odd and some odd
power of b is 3 -1 mod p. Deduce from (4) of Theorem 2.5.12 that [u b]l
has odd exponent and so is = 1.

If b is a multiple of 4, argue similarly, except that if a = 1 mod 4, find
a prime p G 3 mod 4 with -p E a mod b.

2.5.18. Exercise. Deduce from Exercise 2.5.17, from Proposition
2.5.14, from the exact sequence of (2.5.7),  and from Corollary 2.3.3, that
the Whitehead group Wh(G) vanishes if G is a group of order 3.

2.5.19. Exercise (Relative K1 for split extensions). (Cf. Exercise
1.5.11.) Show that if
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is split exact (i.e., I is an ideal in a ring R, and there is a splitting home-
morphism s : R/I ---f  R), then

14 Kl(R,  I) --+ K1(R) --+ Kl(R/I)  -+ 1

is split exact. (Hint: first show that GL(R) is a semidirect product

GL(R, I) x GL(R/I).

Then obtain a splitting of E(R).)

2.5.20. Exercise (Failure of excision for Kl). It is not true in gen-
eral that Kl(R,  1) only depends on the structure of I as a ring without
unit; it also depends on R. Here is a simple counterexample due to Swan
[SwanExcision].  Let k be a field and let

R= { (; 1) +3í%)},  RI= { (; L) -z(k)),
I= { (; ;) -b(k)}.

Note that there are split extensions

Q-,I-+RAkxk+Q, O+I-+Rí+k--+Q.

Show that Rí g k[t]/(t2), a commutative local ring with maximal ideal I,
and use Corollary 2.2.6 and Exercise 25.19 to show that Kl(Rí,  I) g k
(here k is viewed as an additive group).

Show on the other hand that Kl(R, I) = 1. Since I is contained in the
radical of R, you can apply the method of proof of Proposition 2.2.4 to see
that Kl(R, I) gis enerated by the image of {X E RX : 2 = 1 mod I}. Then

1 byou can show that o 1
( )

E R is always a commutator in RX (except in

the exceptional case where k has only 2 elements, in which case its image
in K1 (R, I) is still trivial).

2.5.21. Exercise (The ìCongruence Subgroup Problemî). If R is a
commutative ring, the famous ìCongruence Subgroup Problemî for R asks
if every normal subgroup H of SL(R) is one of the ìcongruence subgroups”
SL(R, I) = {A E SL(R)  : A = 1 mod I} for some two-sided ideal I of R.
First observe that by Theorem 2.5.3 and Proposition 2.5.10, this can be
the case only if SK1 (R, I) = 1 for all I (for I = R this says SK1 (R) = 1).
Prove the converse, by proving the following fact [Bass]:

Theorem (Bass). If R is a ring and H is a normal subgroup of GL(R),
then there exists a unique two-sided ideal I of R such that E(R, I) & H C
GL(R, I).

Hint. If H = 1, then take I = 0. Otherwise, let H(n) = H tl GL(n, R).
This is non-zero and normalized by E(n, R) for some n 2 2. Show by
looking at the commutators

[(; ;)y (ë,- ;)]> ~EH(~),~:ER~,
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that H(TL + 1) > E(n + 1, R, Ií) for some non-zero ideal 1í. Show that
H > E(R, Ií). Then let I be the largest two-sided ideal of R such that
H 2 E(R, I). If H $ GL(R, I), let Hí be the image of H in GL(R/I),
repeat the same reasoning with H’ 2 GL(R/I),  and derive a contradiction.

To prove the uniqueness of I, note that if E(R, 1) c H C GL(R, J),
then projecting to R/J, we obtain E(R/J,  (I+ J)/J)  = 1, hence I C J.
Thus if E(R, J) C H C GL(R, I) also, J G I and I = J.

Deduce from Proposition 2.2.2, from Corollary 2.3.3, and from Exercise
2.5.17 that the Congruence Subgroup Problem has an affirmative answer
if R is a field or R = Z.

2.5.22. Exercise (Non-triviality of relative Mennicke symbols).
Let R be the Dedekind domain of Exercises 1.4.23 and 2.3.11, i.e., lR[z, y]/
(x” + y2 - 1). It was shown in the second of these Exercises that [X y]
represents an element of order 2 in SKI(R). By Exercise 1.4.23, I =
(y, 2 - 1) is a prime ideal in R and R/I 2 IK. Deduce from 2.5.10 that
SK1  (R, I) # 0, in fact that [Z y]r # 0 in SK1  (R, I). Is this element also
of order 2?
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KO and IS1 of Categories,

Negative K-Theory

1. I-Co and K1 of categories, Go and G1 of rings

For many of the applications of K-theory, it is useful to have the notion of
K-theory for categories and not just for rings. In this more general context,
the K-theory of a ring R is just the K-theory of the category Proj R of
finitely generated projective modules over R. Another natural example is
the topological K-theory of a compact space X, which is the K-theory of
the category Vect X of (locally trivial, real, or complex) vector bundles
over X. The identification of this with the K-theory of the ring R = C(X)
then follows from an equivalence of categories Proj R 2 Vect X. But
there are also many examples that donít come so directly from rings; for
instance, if X is a projective algebraic variety, one can consider in a similar
way the category Vect X of algebraic vector bundles over X. We will see
many more examples shortly.

To begin with, we need to place limitations on the sorts of categories we
will consider. These are of two sorts. On the one hand, the category needs
to have enough structure so that it makes sense to talk about an object as
being built up as an extension of smaller objects. There are several ways
of ensuring this and weíve chosen here what seems to be the most stan-
dard choice, though not the most general one. In addition, the category
has to be ìsmallî enough to avoid set-theoretic difficulties when we try to
make isomorphism classes of objects into a group. Of course, it suffices
to require that the category be ìësmallî in the usual sense of category the-
ory (i.e., for its objects and morphisms to constitute sets), but this seems
overly restrictive since the natural examples Proj R and Vect X are not
small categories. This should explain the following definition. Call a cate-
gory A preadditive (this term is not entirely standard) if Horn (A, B) is
an abelian  group for each A, B E Obj d, and if composition of morphisms
is bilinear. Recall first of all that an additive category is a preaddi-
tive category A with a distinguished object 0 such that Hom(A, 0) = 0,
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Horn (0, A) = 0 for each A E Obj d, equipped with a binary operation @
which is both the categorical product and the categorical coproduct. An
abelian category is an additive category in which every morphism has
a kernel and cokernel, and in which every monomorphism is a kernel and
every epimorphism is a cokernel. Any abelian  category has a notion of
exact sequences for which the Five-Lemma and Snake Lemma are valid.
Good general references on abelian  categories are [Mac Lane] and [Freyd],
though we will need very little of the theory developed in these books.

3.1.1. Definition. A category with exact sequences is a full additive
subcategory P of an abelian  category d, with the following properties:

(1) P is closed under extensions, i.e., if

is an exact sequence in A and PI, P2 E ObjP, then P E ObjP.
(2) P has a small skeleton, i.e., P has a full subcategory PO which is

small, i.e., such that Obj PO is a set, and for which the inclusion
PO + P is an equivalence.

The exact sequences in such a category are defined to be the exact se-
quences in the ambient category A involving only objects (and morphisms)
all chosen from P.

3.1.2. Examples.

(1) Any small abelian  category, or more generally any abelian  category
with a small skeleton, is a category with exact sequences. Exam-
ples include the category of finite-dimensional vector spaces over
a field F, or the category of finite-dimensional complex represen-
tations of a topological group G. To get a small skeleton, take
{Fî : n E N} in the first case, or {Hom(G, GL(n, Cc)) : n E N} in
the second case. When G = Z, the category of finite-dimensional
complex representations of G may be identified with the category
of pairs (V, T), where V is a finite-dimensional complex vector
space and T E Aut V is the image of the generator of G. Another
similar example is the category of finite-dimensional complex rep-
resentations of the monoid N, which may be identified with the
category. of pairs (V, T), where V is a finite-dimensional complex
vector space and T E End V.

(2) Let R be a ring. Then Proj R, the category of finitely gener-
ated projective R-modules, is a category with exact sequences,
with small skeleton the set of direct summands in {Rî : n E N}.
However, this is usually not an abelian  category since the coker-
nel of a map between projective modules is usually not projective
(think of the simple case R = Z, Z -% Z). The category Proj R
has the additional property, not true for the category of finite-
dimensional complex representations of Z, that every short exact
sequence splits.
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(3) Let R be a ring and let R-Modf,  be the category of finitely gen-
erated R-modules. This is an additive subcategory of the abelian
category of all R-modules, and has as a small skeleton the set of
quotient modules of the {R” : n E N}. If R is not left Noetherian,
this is not an abelian  category, since the kernel of a map between
finitely generated R-modules may fail to be finitely generated. (If
I is a left ideal of R that is not finitely generated, then R and R/I
are singly generated but the kernel of the quotient map R -+ R/I
is not finitely generated, so this morphism doesnít have a kernel in
the category.) Nevertheless, R-Modfa is always a category with
exact sequences, since if

is an exact sequence of R-modules with Ml and M2 finitely gen-
erated, one can choose a finite set of elements of M whose images
in Mz generate M2,  and these together with the images of a finite
set of generators of Ml will generate M.

(4) Let R be a ring and let R-Mod+,  be the category of R-modules
with a finite-type projective resolution, i.e., R-modules M for
which there exists an exact sequence

(3.1.3) 0 -+ P, -i . . . +P,+M-+O

with Pj E Obj Proj R. This is a full additive subcategory of
R-Modf,,  and may or may not coincide with R-Modf,.  If it
does and R is left Noetherian (so that R-Modf,  = R-Mod+, is
an abelian  category), the ring R is said to be (left) regular. For
a ring to be left regular, it is sufficient (but not necessary) that it
be left Noetherian and have finite global dimension (which means
that there exists an N such that every R-module has a projective
resolution of length 5 N). For the fact that R is left Noetherian
implies that every finitely generated R-module has a resolution by
finitely generated projective modules, and the global dimension
condition then guarantees that every such resolution has length
5 N. In particular, any PID is left regular (since any submodule
of a free module is free). Any Dedekind domain R is left regular,
since R is Noetherian by Theorem 1.4.5, and the proof of Corol-
lary 1.4.6 shows that every submodule of a finitely generated free
R-module is projective.

The group rings of non-trivial finite groups are not left regular.
To see this, note that for a non-trivial finite cyclic group H one
has H,(H, Z) # 0 for all odd n, so that the finitely generated
ZH-module % cannot have a finite projective resolution. Then if
G is any non-trivial finite group, we can choose a non-trivial cyclic
subgroup H G G, and it follows from ìShapiroís Lemmaî that

H,(G,  ZG @L-H  Z) 2 Hn(H, z> # 0
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for all odd n, so that the finitely generated ZG-module ZG @zH Z
cannot have a finite projective resolution.

We will see in Proposition 3.1.4 below that whether or not R is
left regular, R-Modr,,,  is a category with exact sequences.

(5) Let A be an abelian  category in which every simple object is iso
morphic to an element of some set S of objects. (A simple object
in an abelian  category is the natural generalization of a simple
module over a ring; it is an object M E Obj A (with M # 0) such
that any monomorphism N H M is either 0 or an isomorphism.
The definition has a number of immediate consequences. If M
is simple, then End A4 is a division ring (Schurís Lemma), and
any non-zero morphism M + M’ is necessarily a monomorphism,
since its kernel N H M canít be an isomorphism, hence must be
0.) Call the simple objects in A objects of length one, and de-
fine inductively (for n 2 2) the objects of length n to be those
objects M E Obj A for which there is an exact sequence in A

with MI  of length n - 1 and with Mz E S. We will see in Prop*
sition  3.1.5 below that the full subcategory AR of A consisting of
objects of finite length, objects M of length 5 n for some n, is a
category with exact sequences. The Jordan-Holder Theorem holds
in this context (with the usual proof), i.e., for M of finite length,
the length e(M) is well defined, and the simple modules that occur
in a ìcomposition seriesî for M are unique up to isomorphism and
permutation. The category of finite-dimensional representations of
a (topological) group G is a good example of a category of objects
of finite length.

(6) Let X be a compact Hausdorff space. Then Vect X is a cate-
gory with exact sequences, equivalent to Proj R, R = C(X), by
Theorem 1.6.3. Here one can work over either B or C.

(7) Let X be a projective algebraic variety [Hartshorne, Ch. I, ë$21
over an algebraically closed field (or more generally a projective
scheme--see [Hartshorne, Ch. II]-over a commutative Noetherian
ring). Then Vect X, the category of algebraic vector bundles over
X, is a category with exact sequences. Since a vector bundle is
determined by its sections over open sets, Vect X is the same as
the category of finitely generated locally free Ox-modules, where
0~ is the sheaf of germs of regular (algebraic) functions over X.
As such, it may be identified with an additive subcategory of the
abelian category of Ox-modules. A major difference between this
example and Example (6) is that short exact sequences of algebraic
vector bundles, unlike short exact sequences of topological vector
bundles, do not necessarily split. This is due to the fact that in the
algebraic setting, one does not have partitions of unity, and thus
it is not possible to mimic the proof of Theorem 1.6.3.
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A related (usually slightly larger) category with exact sequences
is CohShX, the category of coherent sheaves over X; this is
the category of finitely generated Ox-modules with resolutions by
modules from Vect X. One can show that CohShX is an abelian
category. Under suitable regularity assumptions (e.g., X a non-
singular variety), resolutions of coherent sheaves by locally free
sheaves will have finite length, and the relationship between the
two categories Vect X and CohShX is then the same as between
Proj R and R-Modf,  when R is a left regular ring.

3.1.4. Proposition. Let R be a ring and let

o+M+MZMz-,O

be a short exact sequence of R-modules. If MI and MZ have resolutions of
length n by modules in Proj R (of the form (3.1.3)),  then so does M. In
particular, R-Modf,,,  (as defined in Example 3.1.2(4))  is a category with
exact sequences.

Proof. Choose resolutions

0 -_) Pij'
_+$

_pt, &_p
__)  . . . Mj + 0, j = 1,2.

By projectivity of Pi2),  there is a map SF’ : Pg(ë)  + M with ,6oSr’ = -$ëI.
Then using r!ë, we can extend this to a surjection

b. : PO = P,(l) @ PC2)  + M0

since two elements of M with the same image in M2 differ by an element
of (Y(M~).  Then we have a short exact sequence

0 -+ ker #’ + ker 60 -+ ker 7:’ + 0

and we can repeat the process to get a surjection

61 : PI = Pi” CD PC2)  + ker 61.1

Continuing, we eventually get a resolution of M by the Pj = Pj(ì@P,!ë). Cl

3.1.5. Proposition. Let A be an abelian  category, for instance the cate-
gory of R-modules for some ring R, and let

0+M$M~M2--)0

be a short exact sequence in A. Assume Ml is of length n1 and M2 is of
length n2 in the sense of Example 3.1.2(5).  Then M is of length n1 + n2.
In particular, dH is a category with exact sequences.

Proof. The proof is by induction on n2 = l(M2). If this is 0, the result
is obvious, and if itís 1, this is true by definition. Otherwise, assume the
result for smaller values of C(M2) and choose an exact sequence
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with N of length n2 - 1 and S simple (by definition of [(M2) ). Let M’ =
P-ë(N). By ’ d tm UC ive hypothesis, l(A4í)  = ni + 722 - 1, and we have a
short exact sequence

O-+Mí+M-+S+O,

so M is of length ni + 722. 0

Now that we have a reasonable number of examples to work with, we
are ready to define Ko and K1 for categories and Gc and Gi for rings.

3.1.6. Definition. Let P be a category with exact sequences with small
skeleton Po. We define Ko(P) to be the free abelian  group on Obj Pe,
modulo the following relations:

O-(i) [P] = [Pí]  if there is an isomorphism P -% P’ in P.
0-(ii) [P] = [Pi] + [Ps] if there is a short exact sequence

in P.

Here [P] denotes the element of Ko(P) corresponding to P E Obj Po, and
O-(i) is really the special case of O-(ii) with PI = 0. Note also that since
every P E Obj P is isomorphic to an object of PO, the notation [P] makes
sense (by O-(i)) for any object of P.

We define Kl(P)  to be the free abelian  group on pairs (P, a), where
P E Obj Ps and (Y E Aut P, modulo the following relations:

I-(i) [(P, o)] + [(P, P)I = [(P, @)I.
1-(ii) If there is a commutative diagram in P with exact rows

II a1 1 a 1 w 1 II
0  - PI L P n P2 - 0 ,

where cz E Aut P, ~1 E Aut PI, and cq E Aut Ps, then

[(P,  a>1 =  [(Pl, 41 +  [P2, a2119

If R is a ring (with unit), we define Go(R) = Kc(R-Modf,),  Gl(R)  =
Ki(R-Modfg).

This definition is justified by the fact that in the case of Example
3.1.2(2),  it gives us back our old definitions of Ko and K1 for rings.

3.1.7. Theorem. If R is a ring and Proj R is the category of finitely gen-
erated projective modules over R, then Ko(R) may be identified naturally
with  Kc(Proj R), and Kl(R) may be identified naturally with
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K1 (Proj R). In particular, if R is a division ring, then since Proj R =
R-Modf,, Go(R) = &(R) 2 Z and GI(R) = KI(R)  Z Rzb.

Proof. (1) By their definitions, F&(R) and &(Proj  R) are both abelian
groups with one generator [P] for each isomorphism class of finitely gen-
erated projective modules over R. In Ko(  R), [P] + [Q] is defined to be
[P $ Q], whereas in &(Proj  R), by relation 0-(ii), [P] + [Q] is given by
[N] for any finitely generated projective module N for which there exists a
short exact sequence

O-,P+N+Q+O.

Since N = P @ Q clearly has this property, the addition operations in the
two groups coincide. Finally, we need to see that any relation satisfied in
one group is satisfied in the other. By the definition of the Grothendieck
group (cf. Theorem 1.1.3),  Ko(R) is the free group on the generators [P]
modulo the relations [P] = [Pí] if P g Pí, [P] + [Q] = [P @ Q]. These
relations are satisfied in &(Proj  R), so we only need check that relation
0-(ii) of Definition 3.1.6 is satisfied in Ko(R). But if

is a short exact sequence in Proj R, this sequence must split since Pz is
projective, and thus P E PI @ P2, so that

[p] = [PI @ p2] = [PI] + [Pz] in &(R),

as required.
(2) If A E GL(n, R), then A defines an automorphism CY E Aut(Rî),  so

let us define a map ëp  : KI (R) + K~(Proj R) by [A] H [(Rî, a)]. To show
this is well defined, suppose Aí E GL(ní,  R) defines cr’ E Aut(Rîë).  Recall
that [A] = [Aí] in Kl(R) if and only if there is some N 2 n, ní, such that

(A @ lN+) z (Aí @ 1~~~ë) mod E(N, R).

But first of all,

[CRî,  a)1 = [(RN, a as lR~-n)] and [(Rîë, aí)] = [(RN, a’ @ lRi.--n~)]

in Kl(Proj R) by relation 1-(ii) of Definition 3.1.6. Secondly, if B E
GL(N, R) defines p E Aut(RN) and C E GL(N, R) defines y E Aut(RN),
then BC E GL(N, R) defines r/? E Aut(RN) (we are letting matrices act
on the right), and thus (by l-(i) of Definition 3.1.6)

p( [B] . [Cl) = ë~([Bcl)  = [(RN,  rP)l = [(RN  7 r>l + [(RN > @)I,

which is the same as cp([B])  + cp([C]).  So to complete the proof that p is
well defined, we need only show that cp([C])  = 1 if C E E(N,  R). It suffices
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to prove this with C = eij(a), a E R. But note that there is a commutative
diagram with exact rows

0 - RN-' -k RN ?F R - 0,

where L is the obvious map from RN-’ to the vectors in RN with i-th co-
ordinate 0, and 7r is projection onto the i-th coordinate, so that by relation
1-(ii) of Definition 3.1.6, we have

[(RN,  eij(o))] = [(RN-ë,  URN--I)]  + [(R, IR)] = [(RN,  ~RN)I.

Thus cp is well defined, and the proof has shown at the same time that it
is a homomorphism.

Now let us show that cp : K1 (R) -+ K~(Proj R) is an isomorphism.
(Note by the way that we are writing Kl(R) multiplicatively and Kl(Proj
R) additively.) To show ëp is surjective,  it suffices to observe that if P E
ObjProj  R and 01 E Aut P, then there must be (by Theorem 1.1.2) some
Q E Obj Proj R and N E N with P @ Q % RN. Using relation 1-(ii) of
Definition 3.1.6, we have

[(p, a)] + I(&, lQ)] = [(p@ Q, 0 @ lQ>l,

which, since P @ Q % RN, lies in the image under cp of GL(N,  R). But
[(Q, lo)] is the i en i y element of Kr (Proj R), so this shows [(P, a)]  liesd t t
in the image of ëp.

So it remains only to show injectivity.  Suppose cp([C])  = 0 for some
C E GL(n, R). This means that if y is the corresponding automorphism
of Rî,  then [(Rî,  r)] 1ies in the subgroup of the free abelian  group on all
pairs [(P, a)], P E Obj Proj R and (Y E Aut P, generated by the relations

KPY  a)1 + KC @)I - KC 417

[(PY Q)I - [(Pl, %>I - KP27  a211

associated to l-(i) and 1-(ii) of Definition 3.1.6. But these relations can all
be rewritten as linear combinations of the relations

[(p, a>] - [(p @ Q, QI @ IQ>]

whenever P @ Q E Rî,  together with the relations associated to l-(i) and
1-(ii) with all modules not just projective but free. So we can suppose
[(Rî, r)] lies in the subgroup generated by relations associated to finitely
generated free modules.

Since we may take our finitely generated free modules to run over the set
{R” : n E RI},  we may identify each automorphism of a free module with
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the corresponding matrix, and we may suppose that in the free abelian
group F on generators [A, j], with A E GL(j,  R), j E N, [C, n] lies in the
subgroup generated by the relations

1-(ií) [A, A + P, A - PA, A
corresponding to the relations associated to l-(i), and by the relations

l-(iií) [A, j + ICI - [Ai, jl - L-42, 4
attached to diagrams

0  - Rj 2 @+k ì--,Rî-0

0 14 1
A

1
A2

I/

0 - Rj 2 Rj+k A  R” - 0 ,
corresponding to the relations associated to 1-(ii). We may further rewrite
the relations of type l-(iií) as linear combinations of those of two sorts:
relations

1-(ii/)-a [A, A - PAB-l,  f
(corresponding to the case k = 0 above), allowing for arbitrary changes of
basis, and relations

1-(ii/)-b

corresponding to the case where the injection Rj + Rj+k is the standard
one given by the first j coordinates. The quotient of the free abelian  group
F by the subgroup generated by relations 1-(ií) and 1-(ii/)-a  is clearly the
direct sum Bj GL(j, R)ab. Dividing by the subgroup generated by the
relations 1-(iií)-b then gives l%GL(j, R)ab  = GL(R),b  = Kl(R), divided
by the additional relation that

[(: 12)] = [(Agi j2)]*
However, this relation is already satisfied in Kl(R), so [C] = 1 E Kl(R)
and ëp  is an isomorphism. 0

Let us now examine the meaning of Definition 3.1.6 for the other Ex-
amples 3.1.2. When X is a compact Hausdorff space, it is obvious that
Ko(Vect  X) is the Grothendieck group of the semigroup of isomorphism
classes of vector bundles over X, and may be identified with Kí(X).
Kl(Vect X) is a less familiar object, but since Vect X E Proj R with
R = C(X) by Theorem 1.6.3, this is the same as Ki(C(X)).  It turns out
(see Exercise 3.1.23 below) that there are exact sequences of abelian groups

0 + Cî(X) x K1(VectwX)  + KO-ë(X)  -+ 0,

0 + C(X, Z) z c@(X) x Kl(Vect@X) + KU-l(X) -+ 0.
The example of finite-dimensional representations of a topological group

G is a special case of Example 3.1.2(5), so we turn to this sort of situation
next. The following result was pointed out by Grothendieck in his earliest
investigations of K-theory.
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3.1.8. Theorem (ìDevissageî).  Let A be an abelian  category in which
every simple object is isomorphic to one and only one element of some set
S & Obj A. Then

(1) Kc(d~)  is canonically isomorphic to the free abelian group on the
set S.

(2) Ki(da)  is canonically isomorphic to eMES Ki(End  M). (Since
for M E S, End M is a division ring, we have Ki(End  M) g
(End M),X, = (Aut M)ab by Corollary 2.2.6.)

Proof. (1) Clearly there is a homomorphism cp from the indicated free
abelian  group F to G = Ks(dH),  defined by sending a generator [Ml,
M E S, to the corresponding generator of G. To define an inverse $ to
this homomorphism, if M E Obj A is of finite length, map [M] E G to
Ci[Mi]  E F, where the Mi E S are the composition factors of M (repeated
according to their multiplicities), which are well defined by the Jordan-
HGlder  Theorem. This gives a well-defined map on G since if

is a short exact sequence, the composition factors of M (counting mul-
tiplicities) are just the union of the composition factors of M’ and the
composition factors of Mî.  We have II, o cp = 1~ by the construction. To
prove that cp o 1c, = lo, we show cp o $([M])  = [M] for M E Objdfl by
induction on f?(M). If l(M) 5 1, this is obvious, so assume the result for
M’ with l(Mí)  < l(M), and choose a short exact sequence

with M” E S. By inductive hypothesis, cp o +([Mí])  = [Mí] and ëp  o
$([Mî])  = [Mî]. But [M] = [Mí] + [Mî], so ëp  o @([Ml) = [Ml, and this
completes the inductive step.

(2) Let 4,. denote the category of semisimple objects in A, i.e., the finite
direct sums of simple objects. We will define an isomorphism ëp  : K1 (da)  -+
eNeS K1 (End N) as follows. Given M E Obj Aa and a E Aut M, note
that the largest semisimple subobject Ml of M (this is usually called the
socle of M, denoted sot M) exists and must be non-zero, and is necessarily
a-invariant. So there is an o-invariant canonical finite filtration of M with
composition factors Mi in Obj A.. (Take the cokernel of sot M H M, take
its socle, and keep iterating the construction as many times as necessary.)
Let ai be the automorphism of the composition factor Mi induced by o. By
relation 1-(ii) of Definition 3.1.6, we have [(M, cr)]  = Ci[(Mi, q)].  Now
each Mi is isomorphic to a direct sum of simple objects N E S with certain
multiplicities ny, and End Mi 2 nNEs M+ (End N). So oi may be viewed
as an element of &es GL(nî,  End N) (this is really a finite product), and
thus defines an element [cyi] of eNES  K1 (End N). We let cp ([(M, cx)]) =
Ci[cxi].  This d fie nes a homomorphism from the free abelian  group on the
pairs (M, o) to eNES K1 (End N), and since it is clearly compatible with
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relations l-(i) and 1-(ii) of Definition 3.1.6, it passes to a homomorphism ëp  :

Kl(dd + GAvEs K1 (End N). Furthermore, cp is clearly surjective,  since
if N E 5’ and a E Aut N, cp([(N,  a)]) = [u]  E (Aut N)& = Ki(EndN),  and
thus the image of cp contains a set of generators for eNEs Ki(EndN).

It remains only to show that cp is injective.  For this it is enough to note
that the proof of surjectivity  of cp in fact gives a construction of an inverse,
namely, ifNi,..., Nk are distinct elements of S and ai E Aut Ni,

This is well defined since replacing each oi by a conjugate element of Aut Ni
does not change the Ki-class  on the right, and 1c, obviously gives a right
inverse to cp.  To see that $ gives a left inverse to cp, note that with (M, o)
as above,

$0 p ([(M, a)]) = C$([ai])  = @N,, @detai 7
i K i i I

which agrees with (M, o) by the proof of the fact that Ki(Proj End Ni) g
Kr(End  Ni) (Theorem 3.1.7). 0

The next theorem, also due to Grothendieck, applies to our other main
classes of examples, and relates R-Mod+,  to Proj R and (in the regu-
lar case) CohShX  to Vect X. The version in which we state it, taken
from [BassHellerSwan],  is probably not as general as possible, but will be
adequate for our purposes. First we need a simple observation about the
functoriality of Ko and K1, a simple lemma about the ìEuler-Poincare
principleî of $1.7, and a lemma about ìresolutionsî in a category with
exact sequences.

3.1.9. Proposition. Suppose P and M are categories with exact se-
quences, and F : P -+ M is an exact functor, i.e., a functor sending short
exact sequences to short exact sequences. Then F induces homomorphisms
F, : Ko(P) + Ko(M)  and F, : K1(P) -+ Kl(M).  In fact, KO and KI are
functors from the category of all  categories with exact sequences and exact
functors to the category of abelian  groups.

Proof. This is immediate from the fact that F sends relations O-(i), O-
(ii), l-(i), and 1-(ii) for P t o corresponding relations for M. 0

3.1.10. Lemma. Let M be a category with exact sequences contained in
some abelian  category A, and assume that if

is a short exact sequence in A and Mz, MS E Obj M, then Ml E Obj M.
(In other words, M contains the kernel of each of its morphisms which is
an epimorphism in A.) Then for any exact sequence



1. Ko and K1 of categories, Go and G1 of rings 119

the Euler characteristic Cj (-l)j [Mj] vanishes in Ko(M).

Proof. This is true by O-(i) of Definition 3.1.6 if n = 1, and by 0-(ii)
of Definition 3.1.6 if n = 2. So let n > 3 and assume by induction on
n that the Lemma is true for exact sequences of shorter length. By the
assumption on M, the kernel K of It41 + Me lies in M, so we can split
the given exact sequence into the shorter exact sequences

0 + M, --+ . . . +M2+K+0.

By 0-(ii), [K] + [MO]  = [MI],  and by inductive hypothesis,

[K] - &-I)j[M3]  = 0.
j=2

Combining these two equations gives ~~=e(-l)j  [Mj]  = 0. 0

3.1.11. Lemma. Suppose M and P are categories with exact sequences,
both contained in the same abefian category A, and with P a full subcat-
egory of M. Also assume:

(1) that for each object M E ObjM, there is a finite  resolution by
objects of P, i.e., an exact sequence (3.1.3) in M of finite length
with Pj E Obj P;

(2) that if
0 --) MI + M2 --) MS + 0

is a short exact sequence in A and M2, M3 E Obj M (resp., Obj P),
then MI E Obj M (resp., Obj P). (In other words, M and P each
contain the kernels of each of their morphisms which are epimor-
phisms in A.)

Then if M’ -% M is a morphism in M and

is a resolution of M by objects of P, one can complete these to a commuting
diagram in M

0 + ... - P'n+l  -_)  P,', + . . . - PA 5 M’ - 0

I/ 1 --I 4 4 II
0 + . . . -_) 0 -_) P, --_, . . . - PO -2 M  --+O

whose rows are finite resolutions by objects of P.

Proof. Note that PO @ M’ (E, M is an epimorphism since PO 5 M
is, hence by hypothesis (2) on M it has a kernel B H PO @ Mí in M. (This
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is the ìpull-backî of E and o.) Hence by hypothesis (1) on M, there is an
epimorphism Ph -H B. Composing with the maps B + PO and B -+ M’
we get a commuting diagram

a0 1 B 1 II
J

PO A M - 0.

The remaining CY~,  j > 1, are constructed by induction on j. Suppose
j > 1 and ok has been constructed for 0 < Ic < j. By hypothesis (2) on

M, Ph 5 M’ and PO -f-+ M have kernels 2; and 20 in M. Then Pi -+ Z(,
and PI + 20 are epimorphisms, and also have kernels in M. Iterating
the argument, we see we have Zi_i, Zj-i E Obj M and a commutative
diagram with exact rows

Now we just repeat the above construction to fill in the commutative dia-
gram

Pj’ - Z!3-l - 0

aj 1 resaj-1 1 II
P j  -  Zj-1 - 0 .

This completes the inductive step, so the induction gives us a commuting
diagram with exact rows

0 - z:, - PA
E’- ... - 6 -Mí------+O

I/ 1 Qn 1 a0 1 a1 IIo - o - pn _, . . . - PO E M  - 0.

We complete the diagram by using hypothesis (1) to get a finite resolution
of 2; by objects of P. 0

3.1.12. Corollary. Under the same hypotheses as Lemma 3.1.11, if M E

Obj M and P. -% M, P: 5 M are two different finite resolutions of M
by objects of P, then Cj(-l)j[Pj]p  = Cj(-l)j[PJp  in Ko(P).



1. I(0 and K1 of categories, Go and G1 of rings 121

Proof. Apply the Lemma to complete the diagram

P; +...--t

i- 1

P{ 2 M -0

(a?&, a;, (W, a;,
1 Al II

0  4 P, @ PA + ... + PO @PA =L M@M - 0 ,

where A is the diagonal map. Consider cr. and o: as chain maps of bounded
chain complexes in P:

oy. : P:’ -+ P. and CY~:P~--+P:.

Note that we have cut off the Mís at the end, so that P:ë,  P., and P: are
only chain complexes, not exact sequences. Each one is acyclic except at
the 0-th slot and has non-vanishing homology Hs = M. Since cr, and CX:
are isomorphisms on homology because of the commutative diagram above,
the mapping cones C, and C,, are acyclic (recall Theorem 1.7.7; we are in
a general abelian  category rather than the category of modules over a ring,
but otherwise the proof is the same). So by Lemma 3.1.10 (applied in the
category P), together with the definition of the mapping cone, we have

9 = x(G) = x(P.) - x(X), 9 = x(GO = x(PL) - x(P:ë)

in &(P). The result follows immediately. Cl

3.1.13. Theorem (ìResolution theoremî). Suppose M and P are
categories with exact sequences, both contained in the same abelian  cat+
gory A, and with P a full subcategory of M. Also assume:

(1)

(2)

that for each object M E Obj M, there is a finite resolution by
objects of P, i.e., an exact sequence (3.1.3) in M of finite length
with Pj E Obj P;
that if

is a short exact sequence in A and M2, MS E Obj M (resp., Obj P),
then MI E Obj M (resp., Obj P). (In other words, M and P each
contain the kernels of each of their morphisms which are epimor-
phisms in A.)

Then the inclusion functor P v M induces an isomorphism on Ko.

Proof. If a category with exact sequences P is a full subcategory of a
category with exact sequences M, then the inclusion functor L : P - M
is exact, so it induces a map L* on KO  and KI by Proposition 3.1.9. Using
the idea of the Euler characteristic from $1.7, we construct an inverse map
~PO : Ko(M) + Ko(P) by PO : WIM H Cj(-l>j[Pj]P if

0 + P, + . . . -+P,+M+O
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is exact in M, with Pj E Obj P. This is well defined, i.e., independent of
the choice of resolution, by Corollary 3.1.12. By Lemma 3.1.10, [M]M =
Cj(-l)j[Pj]~  in Ko(M), so L* o yx,([M]~) = [M]M.  On the other hand
it is clear that cpo o h,([P]p) = cpo([P]~)  = [P]p for P E Obj P, so L* is an
isomorphism on Ko. 0

Next we have the analogue of Theorem 3.1.13 for K1, again following
[BassHellerSwan].  Note that the hypotheses are a bit stronger than those
of 3.1.13, though they will still be satisfied for all cases of interest.

3.1.14. Theorem (ìResolution theorem for ICIî).  Suppose M and
P are categories with exact sequences, both contained in the same abelian
category A, and with P a full subcategory of M. Also assume:

(1) that for each object M E Obj M, there is an epimorphism P + M
in A with P an object of P, such that every endomorphism of M
lifts to an endomorphism of P;

(2) that if

4-l. . . +P$+P,_1 - . . . + PO + M -i 0

is exact in M with Pj E Obj P, then kerd, E Obj P for some
(sufficiently large) n;

(3) that if
0 --+ Ml + M2 + M3 --) 0

is a short exact sequence in A and Mz, MS E Obj M (resp., Obj P),
then Ml E Obj M (resp., Obj P). (In other words, M and P each
contain the kernels of each of their morphisms which are epimor-
phisms in d.)

Then the inclusion functor P -+ M induces an isomorphism on K1.

Proof. First we want to show that every automorphism of an object of
M lifts to an automorphism of some finite resolution of M by objects from
P. Then we will be able to apply the same sort of reasoning as in the proof
of Theorem 3.1.13.

So let M E ObjM, (Y E Aut M. Using (l), choose P ++ M w i t h
P E Obj P so that every endomorphism of M lifts to an endomorphism of
P. Then consider Q @ 6’ E Aut(M @ M). By Lemma 1.5.4 (the same
argument works in a general abelian  category), this factors as a product of
ìelementaryî automorphisms of the form

with p, y E End M. Lifting p and y to endomorphisms of P shows that
Q $ ay-’ lifts to an automorphism of P @ P. Then (P + M) @ (P + 0)
gives us the first step of our desired resolution of M. The kernel of this
map P @ P + M must be an object of M by hypothesis (3), so we can
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repeat the same construction over and over to get a (potentially infinite)
resolution of M by objects of P so that cr lifts to an automorphism of
the resolution. Then we can cut off the resolution at some finite stage by
hypothesis (2).

The rest of the proof is as in Theorem 3.1.13. We construct an inverse
(pl  to b* : Kl(P) -+ KlW) by mapping  [CM, (~11 +-+ Cj(-l)j[(pj,  q)l,
where a. is an automorphism of the finite resolution P. of M lifting CY.  To
show this is well defined (and independent of the choice of resolution), we
use Corollary 3.1.12 applied to the categories of pairs (M, a), (Y E Aut M,
M E Obj M (resp., P), where the morphisms are commutative diagrams

fM  - M’

a 1 a’ 1
fM - M'.

It is easy to see that the hypotheses of Corollary 3.1.12 apply to this situ-
ation, and we finish the proof as in Theorem 3.1.13. 0

In order to apply Theorems 3.1.13 and 3.1.14 to the context of R-
modules, we need as a preliminary a familiar fact from homological algebra.
(See, for instance, [CartanEilenberg,  Proposition VI.2.11.)

3.1.15. Lemma. Let R be any ring (with unit) and let M be an R-
module. Then the following are equivalent:

(a) M has a projective resolution of length n.
(b) For any R-module N, Extl+ë(M, N) = 0.
(c) The functor  N + Extz(M, N) is right exact.
(d) For any projective resolution

dntl 4-l. . . + pm+1 - pn ++ P,__l __* . . . + PO 3 M --f 0,

imd, = kerd,_l  is projective, and hence the resolution can be
shortened to

4-lO+imd,+P,_~-... + PO -% M + 0.

Proof. (a) + (b). Suppose 0 + P,, -+ . . . -+ PO --+ M + 0 is a
projective resolution of M. Then by definition, Exti(M, N) is the j-th
homology module group of the complex

HOmR (PO, N) + . . . + HOmR  (P,, N) + 0 + . . . ,

so clearly Extg+’  (M, IV) = 0.
(b) + (c). Assume Exti+l (M, IV) = 0. Given a short exact sequence

0 + Nl -+ N2 + N3 + 0,
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there is an associated long exact sequence

Ext;(M, Ni) + Ext;(M,  Ns) + Ext;(M, Ns) + ExtîR+l(M,  Ni) = 0,

and thus the functor N + Extk(M,  N) is right exact.
(c) + (d). To check the projectivity of imd,, we need to show that

given a short exact sequence

and a homomorphism (Y : im d, + Na, cr factors through Ns. In other
words, we need to show that the natural map HomR (imd,,  Nz) +
HomR (imd,, Ns) is surjective,  i.e.,  that the functor

N + HomR (imd,, N)

is right exact. This is immediate from (c) if n = 0, so assume n > 0. From
the short exact sequences

{

0 ---f  im dj+l = ker dj + Pj + imdj --+ 0, j > 0,
O-+imdi=kerdc+Ps-+M-+O,

we obtain exact sequences

0 = ExtkV1(Ps,  Nj) + Extk-ë(imdi,  Nj)

--+ Ext;(M, Nj) + Extn,(Ps,  Nj) = 0,

Ext;-j(P+i,  Nj) + Ext;-j (imdj,  Nj) + Extl-j+ë(imdj-1,  Nj)

+ Ext;--j+’ (P+ NJ = 0, 0 < j 5 n.

These yield isomorphisms

Extl;;(M,  Nj) 2 Extk-ë(imdi,  Nj) 2 . . . E Ext]R(imd,_i,  Nj)

and thus an exact sequence

HomR  (Pn_l, Nj) + HomR (imd,,  Nj) + Extg(M,  Nj) + 0.

Assuming (c) and using projectivity of P,_l, we obtain a commutative
diagram with exact rows and columns

HomR  (P,_l, Nz) + HOmR(imd,, N2) -+ Extz(M, Ns) + 0

&mR (Pn_l,  N3) -+ HOmR  (imA,  N3) + ExtE(ì~  N3)  - o

1 1 /I
0 0 0,

and surjectivity  of HomR (im d,, Nz)  -+ HomR (im d,,  N3) follows  from a

diagram chase.
(d) + (a) is trivial. êI
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3.1.16. Corollary (Grothendieck). Let R be a left Noetherian ring
(with unit). Then the natural map Kj (R) + Kj (R-Modf,,)  (induced by
the inclusion Proj R q R-Mod+,  together with Theorem 3.1.7) is an
isomorphism for j = 0, 1. In particular, if R is left regular, then the nat-
ural map Kj (R) -+ Gj (R) (induced by the inclusion Proj R q R-Modf,
together with Theorem 3.1.7) is an isomorphism for j = 0, 1.

Proof. We need only check the hypotheses of Theorems 3.1.13 and 3.1.14.
It is clear from the definition that every R-module in R-Mod@, has a finite
resolution by finitely generated projective modules. Furthermore, given an
epimorphism P + M with P surjective,  and given an endomorphism (Y of
M, we can fill in the diagram

P - M - 0

a 1 II
P - M - O

by projectivity of P to get a lifting 6 of cz to P, which checks hypothesis (1)
of Theorem 3.1.14. Next, every epimorphism in Proj R splits, hence has
kernel which is a direct summand in a projective module, hence has a kernel
in Proj R. Hypothesis (2) of Theorem 3.1.14 holds by the implication (a)
+ (d) of Lemma 3.1.15.

To finish the proof, we need only show that if M and M’ have finite
projective resolutions of finite type and if M -?+ Mí is an epimorphism, then
kercr  also has a finite projective resolution of finite type. First of all, if M
and M’ each have projective resolutions of length n, then by the implication
(a) + (b) of Lemma 3.1.15, ExtE+ë(M,  N) = Extz+l(Mí,  N) = 0 for any
R-module N. By the long exact sequence associated to the short exact
sequence

O+kera+M+Mí+O,

0 = Ext;+l(M,  N) -+ Exti+ë(ker  (Y,  N) + Ext:+2 (Mí, N) = 0 is exact,
so Exti+ë(ker  o!, N) = 0 and ker a has a projective resolution of length n
by the implication (b) + (a) of Lemma 3.1.15. If R is left Noetherian, it is
immediate that ker CY in fact has a projective resolution of finite type, since
we can start with any resolution of ker CY by finitely generated free modules
(such a resolution exists, since any submodule of a finitely generated module
is finitely generated) and truncate it using the implication (a) =+ (d) of
Lemma 3.1.15. Cl

Remark. The same sort of reasoning shows that if X is a non-singular
projective algebraic variety, then the natural map

Kj (Vect  X) * Kj (CohSh X)

is an isomorphism for j = 0, 1. We omit the proof since setting up the
necessary machinery requires knowledge of too much algebraic geometry.
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Now we are prepared to explain the idea of Grothendieckís original moti-
vation for studying the K-theory of categories, namely, for use in studying
the Riemann-Roth problem. Grothendieck in fact substantially gener-
alized both this problem and the form of its solution, but for simplicity we
will restrict attention here to the classical situation.

For readers who are unfamiliar with it, we begin with a quick review of
the terminology of sheaf theory. If X is a topological space, a presheaf
3 (say of R-modules) over X is a contravariant functor from the category
of open sets of X (and morphisms given by inclusions) to the category of
R-modules. The notation Ií(U,  3) is also used for 3(U), and we refer to
this module as the sections of 3 over U. A sheaf 3 of R-modules is
a special kind of presheaf:  one which also satisfies the gluing condition,
that if {Uj} is a collection of open subsets of X, the restriction map

is a bijection. Typical examples of sheaves are the sheaf of germs of contin-
uous R-valued functions, whose module of sections over U is Cî(U), and
the structure sheaf 0~ of an algebraic variety, whose module of sections
over a Zariski-open set U is the set of regular (algebraic) functions defined
in U. These may be viewed as rational functions without poles in U.

In the category of sheaves over X, the global section functor 3 y-)
Ií(X, 3) is left exact but not right exact. It has derived functors Hj (X, 3),
with the properties that Hî(X,  3) = Ií(X,  3) and that a short exact
sequence of sheaves

0 + 31 --+ 3s --) 3s -+ 0

gives rise to a long exact sequence

... + Hj(X,  3i) + Hj(X,  34 -+ Hj(X,  3S) -+ Hj+ë(X,  3i) + . . . .

We return now to the classical Riemann-Roth problem. Let X be a non-
singular projective algebraic variety of dimension 1 over @, or for short, a
nonsingular curve. X is a compact connected complex manifold of com-
plex dimension 1 and real (or topological) dimension 2, or in other words
a compact connected Riemann surface, say of genus g. (Recall that the
genus is a purely topological invariant of the underlying manifold of X that
doesnít depend on the algebraic structure. It may be defined as the number
of ìholesî in X, or more precisely as i rank Hl(X; Z) = 3 dim@ H1(X; e).)

A divisor D on X is just a formal finite Z-linear combination c njzj
of points zj E X, with nj E Z. The divisors D are in bijection with
isomorphism classes of algebraic line bundles over X via the map C njxj =
D H Co, where Ice is the line bundle whose (algebraic) sections over an
open set U are the rational functions f over U vanishing to order at least
-nj at x~j (and thus regular at points x where n, 5 0). By convention, we
say f vanishes to order 0 at z if f(x) E Cx, and f vanishes to order -lc at
x, k > 0, if f has a pole of order k at x. We make the usual identification of
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a line bundle with the sheaf of its (algebraic) sections. This is a locally free
Ox-module of rank 1; in general, locally free Ox-modules of finite rank
correspond to algebraic vector bundles over X. Note that LE1 = L-D, in
the sense that Lo @IX c-0 = OX, with @x the tensor product for sheaves
(computed pointwise over X).

The classical Riemann-Roth problem was to compute the dimension
a(D)  of the space Ií(X;  LO) of global (algebraic) sections of LD, for any
divisor D. We may think of this dimension as a Betti number for sheaf
cohomology, namely, as dimHO(X, LO). For instance, if D = 0, LD = 0~
and l(D) = 1 (since any rational function on X without poles must be con-
stant by compactness and the maximum principle for analytic functions).
The Riemann-Roth Theorem (see for instance [Hartshorne, Ch. IV, $11)
asserts that

(3.1.17) C(D) - l(K - D) = deg(D) + 1 - g,

where LCK  is the canonical sheaf (the sheaf of algebraic l-forms f(z) dz)
and the degree of a divisor is defined by deg C njxj = C nj. The for-
mula (3.1.17) is clear if D = 0, since a(O) = 1, deg0  = 0, and e(K) =
dim Hî(X, LK) is the dimension of the space of algebraic l-forms on X,
while by the Hodge Theorem,

2g = dimHl(X; Cc)

= dim{harmonic l-forms on X}

= dim ({holomorphic l-forms on X}

@ {anti-holomorphic l-forms on X})

= dim Hí(X, LK) + dim He(X, ,CK)

= 2 dim Hí(X,  LK),

so that e(K) = g.
Let us now sketch a proof of (3.1.17) using &(CohShX),  the K-theory

of the category of coherent sheaves on X. Since X is non-singular and of
(complex) dimension 1, any coherent sheaf F over X has a resolution of
length 1 by locally free sheaves:

(3.1.18) 0 + vi -+ vo + F + 0.

Furthermore, Hj(X,  F) is finite-dimensional for j = 0, 1 and vanishes for
j > 1. One may prove this by using the long exact sequence in sheaf
cohomology associated to (3.1.18) to reduce to the case of a vector bun-
dle V. The finite-dimensionality of Ho comes from compactness of X and
Montelís Theorem (which says that the space of holomorphic sections of
V over X must be locally compact, hence finite-dimensional). The Serre
duality theorem says dim H’ (X, V) = dim Hî(X,  0 @x LK), where 3
is the ìdual”  bundle to V (in the case of a line bundle this is just V-l).
Hence we have finite-dimensionality of H1 as well. The vanishing of the
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cohomology past the (complex) dimension follows, for instance, from Dol-
beaultís Theorem, which identifies Hj(X,  V) with the j-th cohomology of
the complex of antiholomorphic differential forms with values in V.

Thus for 3 a coherent sheaf over X, the Euler characteristic

m

x(3) = c Hj(X,  3)
j=O

is well defined and given just by dim Hí(X,  F) -dim H1 (X, 3). For a line
bundle ,C, Serre duality gives that

X(,C) = dim Hí(X,  L) - dim Hí(X,  L-l 631~ LK).

In particular,

e(o) - !(K - 0) = dim Hí(X,  LO) - dim Hí(X,  LK 63~ LE1) = I,

so the Riemann-Roth Theorem amounts to the statement that

(3.1.19) x(LD>  - X(0x)  = deg D.

To prove this, note that by the ìEuler-Poincare  Principleî (cf. Proposi-
tion 1.7.10),  for any short exact sequence of coherent sheaves

o-+31  -32+3s+o,

we have additivity of the Euler characteristic: X(32) = X(31) + X(33).
(One may see this by taking the corresponding long exact sequence in
sheaf cohomology and applying Lemma 3.1.10 in the category of finite-
dimensional vector spaces over Cc.)  It follows that the map 3 I--+ X(3)
preserves relation 0-(ii) of Definition 3.1.6 and thus passes to a homomor-
phism X : I& (CohSh X) -+ Z. It will suffice for us to get a better under-
standing of this homomorphism. The trick (which was the key contribution
of Grothendieck) is that even though we were initially only interested in
X(3)  in the case of line bundles, it pays to study X in the larger category
CohShX where we have more exact sequences and thus more non-trivial
relations to help us.

Let x be a point of X and let D be any divisor. There is a natural
monomorphism LD -+ LD+I coming from the fact that every section of
LD is also a section of Lo+. This map is an isomorphism away from 2,
so the quotient sheaf S, is a coherent sheaf supported only at x. Fur-
thermore, if n, is the coefficient of x in D, then for U small enough,
I(u, LD+,)/I(&  LO)  iS spanned by

1( >
%+I

ZH -
z - x
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in local coordinates, and hence dimI?(U,  &) = 1 if x E U. From this one
can see that dimHO(X,&)  = 1, dimHí(X,  &) = 0, so X(&J = 1. Then
from the exact sequence

we obtain X(LD+,) = X(cD)+l.  Reversing the roles of D and D+x, we get
X(LD_) = X(LD)  - 1. So if D = cnjxj,, we get X(LD)  = X(&) + xn.j,
which is (3.1.19).

3.1.20. Exercise. Let R be a PID, for instance Z. Show that if M is
a finitely generated torsion R-module, then [M] = 0 in Go(R) 2 Ko(R)
(E Z). Is this necessarily true if R is only a Dedekind domain?

3.1.21. Exercise. Show that the analogues of Theorem 1.2.4, Exercise
1.2.8, Exercise 2.1.6 and Exercise 2.1.7 hold for Go and Gi. In other words,
show that Gj is Moritainvariant  and that Gj (R x S) %J Gj (R) @ Gj (S),
for j = 0, 1.

3.1.22. Exercise. Consider the categories Repz of finite-dimensional
complex representations of Z, which may be identified with the category
of pairs (V, T), where V is a finite-dimensional complex vector space and
T E Aut V is the image of the generator, and the category RepN  of finite-
dimensional complex representations of the monoid  N, which may be identi-
fied with the category of pairs (V, T), where V is a finite-dimensional com-
plex vector space and T E EndV. Determine the simple objects in these
categories and use Theorem 3.1.8 to compute Kc and Kr for each category.

3.1.23. Exercise [Milnor, $71. Let X be a compact Hausdorff space, and
recall that Kj(VectFX)  s Kj(R) with R = C"(X) by Theorem 1.6.3, for
F = R or C, j = 0, 1. Show that there are exact sequences of abelian
groups

0 --f Cî(X) x Kl(VectRX)  + KO-l(X) + 0,

0 -+ C(X, Z) -% c@(X) 3 Kl(Vect@X)  + KU-l(X) + 0.
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Here is a sketch of how to proceed. Recall from Exercise 1.6.15 that

K,-ë(x)  =&f K,o(x  x lit).

Let S = Cî(X x [0, 11)  and let I be the closed ideal of functions vanishing
on X x (0, 1). Then I Z C[ (X x (0, 1)) (as a Banach algebra without
unit) and from the short exact sequence

O+I+S-+RxR+O

we obtain an exact sequence

K~(S) + K1(R) @ ITI + Ko(l)  + Ko(s) + Ko(R) @ f6dR)-

By homotopy invariance of Kc (Corollary 1.6.12),  Kc(S) r Ko(R), and
the map on the right may be identified with the diagonal map Ko(R) +
Ko(R)@Ko(R),  h hw ic is injective.  Furthermore, there is a splitting map
from the diagonal copy of R inside R x R to S (extend a function on X to
a function on X x (0, 1) which doesnít depend on the second coordinate),
so that the above exact sequence gives the exact sequence

K1(S) -+ K1(VectFX) --+ K,O(X x W) + 0,

where we think of Kr (VectpX) as K1 (R) @ 0 - K1 (R) @ K1 (R).

Show that the image of Kr (S) -+ Kl(R) @ 0 can be identified with
the classes in Kl(R) represented by matrices in GL(R) % C(X, GL(F))
which are homotopic to elementary matrices. Then show that the part of
SKI(R)  coming from matrices homotopic to elementary matrices is triv-
ial, and that the classes in RX homotopic to the identity coincide with
the image of the exponential map Cî(X) x C(X,  GL(1, IF)). (Use the
idea of Lemma 1.6.6 to show that an element of C(X,  SL(n, IF)) (resp.,
C(X,  GL(1,  F))) h’ hw rc is close to the identity is an exponential of some-
thing in C(X,  SL(n, P)) (resp., C(X,  F)).) Finally, identify the kernel of
the exponential map Cî(X) = C(X,  GL(1,  IF)) for F = R, Cc.

3.1.24. Exercise. Let p be a prime number and consider the local ring
R = Z/(pî)  with unique maximal ideal I = (p).

(1) Show that R is not left regular, by showing that R/I has a resolu-
tion by finitely generated free R-modules for which condition (d)
of Lemma 3.1.15 is not satisfied for any 72.
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(2) Note that R-Modfg is a category in which R/I is the unique simple
object (up to isomorphism), and in which every object has finite
length. Then use Theorem 3.1.8 to compute Go(R)  and Gl(R).  Is
the natural map Kj (R) -+ Gj (R) an isomorphism for j = O? For
j = l?

3.1.25. Exercise (A step toward Grothendieckís generalized Rie-
mann-Roth Theorem). Let X be a non-singular projective algebraic
variety over C:, now of dimension n > 1. In this more general setting, a
divisor D on X is defined to be a formal finite Z-linear combination C njXj
of subvarieties Xj C X of codimension 1, with nj E Z. The divisors D
are again in bijection  with isomorphism classes of algebraic line bundles
over X via the map C njXj = D H LD, where ~ZD is the line bundle
whose (algebraic) sections over an open set U are the rational functions f
over U vanishing to order at least -nj along Xj (and thus regular along
subvarieties Y of codimension 1 for which ny 5 0). The generalized
Riemann-Roth problem, solved by Grothendieck, is to give a formula
relating X(Co) to x(0x),  analogous to formula (3.1.19).

(1) Assuming that coherent sheaves over X have finite resolutions by
locally free sheaves and thus that the natural map Ko(Vect X) +
Ko (CohSh X) is an isomorphism, and assuming the result of Serre
that for F a coherent sheaf over X, Hj(X,  F) is finite-dimensional
for j 5 n and vanishes for j > n, show as in the one-dimensional
case above that the map _7=  +--+  X(3) preserves relation 0-(ii) of Defi-
nition 3.1.6 and thus passes to a homomorphism X : Ko(Vect X) %’
K,,(CohShX)  + Z.

(2) Let Y be an irreducible subvariety of X of codimension 1, taken
for simplicity to be non-singular. Show as in the one-dimensional
case above that there is a short exact sequence of coherent sheaves

where the quotient sheaf SD, y is a coherent sheaf supported along
Y. Note in fact that SD,  y E LD @x Oy, where we think of the
structure sheaf of Y as being extended to a sheaf on X supported
along Y. Deduce that X~(~Z-Y)-XX(OX)  = -Xy(Oy),  or in gen-
eral that XX(cD-_Y)  - Xx(LD)  = -Xy(L*cD),  where L : Y -+ X
is the inclusion and L*LD is the pull-back of LD to a line bun-
dle on Y. This suggests a mechanism for proving a generalized
Riemann-Roth formula by induction on n.

3.1.26. Exercise (Relative K-groups for categories). Let A and B
be categories with exact sequences, and let F : A -+ I3 be an exact functor,
SO that it defines homomorphisms F, : Kj (A) + Kj (f?),  for j = 0, 1.
Define a relative group Ko(F)  to be the free abelian  group with generators
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[Ao,  Al, a] corresponding to pairs (Ao, Al) E Obj Ax Obj A together with
a morphism Q : A0 + Al in A for which F(o)  : F(Ao)  -+ F(A1)  is an
isomorphism in 8, modulo the relations that

[Ao,  Al, a] = 0 if CY is an isomorphism in d,
and that if there is a commuting diagram of short exact sequences

0  -  Ab’ - Ao -A;-0

II a” 1
a

1
a’

1 II
0  -  Aíi - Al -Aí,---+0

and F(a), F((Yí),  F(crî) are isomorphisms in Z?, then

[A,,, Al, a] = [A;, A;, aí] + [A;, Aí,ë, aî].

Define a map Kc(F) 2 Ko(d) by

[Ao, AI,  ëY]K~(F)  I-+ [Aoko(d)  - [A1lKo(d)

and show that F, o 4 = 0.
Assume further that F is what Bass calls ìcofinal,î in other words that

given Bi E Obj B, there is some B2 E Obj B with Bl@ B2 E F(A) for some
A E Obj d, and also that one can choose the Bz so that F, : End A ---)
End F(A) is surjective (this condition is similar to the first condition in
Theorem 3.1.14). Show that there is an exact sequence

Kl(d) 2 KI(@ %,(F)L Ko(d)~Ko(Z?)

by imitating arguments from Theorems 1.5.5 and 2.5.4. To define the
map 8, note that if B1 E ObjB and /3r E Aut(Br), then with Bs and
F as above, [Bl, p] = [Bl @ Bz, pi @ lls,] in Kr(Z3)  can be replaced by
[F(A), ,0] with A E Objd and p E Aut F(A). Then if F, : End A +
End F(A) is surjective, p lifts to an endomorphism o of A, and we can
define d([F(A), p]) = [A, A, a]. One has to check that this is independent
of the choice of A and (Y.

Check that when _4 = Proj R, I is an ideal in R, 23 = Proj R/I, and F
is induced by the quotient map R + R/I,  then the hypotheses on F are
satisfied and one recovers the exact sequence of Theorem 2.5.4.

2. The Grothendieck and
Bass-Heller-Swan Theorems

In this section, we consider the problem of computing the K-theory of
a ring of polynomials or Laurent polynomials over another ring whose
K-theory is already known. In the case where R = CF(X)  is the ring
of continuous F-valued functions on a compact Hausdorff space X (with
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F = R or C), the ring of polynomials R[t] is, by the Stone-Weierstrass
Theorem, a dense subring  of Cî(X x [0, 11) ( via specialization oft to a real
number in [0, 11). The homotopy invariance theorem for topological K-
theory (Corollary 1.6.11) says that the map t H 0 induces an isomorphism
Ke(Cî(X  x [0, 11)) + K&ì(X)). Thus it is reasonable to view the map
on K-theory

fw[4) -+ Km induced by t H 0

as corresponding to ìalgebraic homotopy,î and to expect this map to be
an isomorphism for suitable rings R. This turns out to be the case for R
left regular (Grothendieckís Theorem), though homotopy invariance fails
in general.

The case of the Laurent polynomial ring R[t,  t-ë1  is more complicated.
When R = Cî(X),  there is a map R[t,  t-ë1  q C@(X  x Sí) defined via
specialization oft to a complex number of absolute value 1, and the image is
dense by the Stone-Weierstrass Theorem. On the other hand, in topological
K-theory, one has the formula

KU-j@  x S1) E KU-j(X) @KU-j-l(X).

In complex K-theory, Bott periodicity holds and K-j only depends on j
modulo 2. Thus if we specialize to j = 1, we have

KU-l(X x Sí)  2 KU-l(X) @KUí(X)  Z KU-l(X) @ Ko(R).

Since, by Exercise 3.1.23, KU-l(X  x Sí) and KU-l(X)  are closely re-
lated to Kl(C@(X  x S1)) and to K1(R),  respectively, and since R[t, t-l]
is dense in Cc(X x Sí), this suggests that perhaps one can expect to have
K1 (R[t,  t-l])  2 K1 (R) @ Ko(R)  when R is a nice enough ring. In other
words, taking Laurent polynomials should correspond to ìalgebraic desus-
pension.” Again, this will turn out to be the case for R left regular (the
Bass-Heller-Swan Theorem). We will also be able to study the extent to
which this and algebraic homotopy invariance fail for rings which are not
left regular. Finally, further study of these ideas will also lead to a defini-
tion of K-groups extending the exact sequence of Theorem 2.5.4 arbitrarily
far to the right.

We begin with a review of two famous theorems of Hilbert, the Basis
Theorem and the Syzygy Theorem, which together imply that if R is left
regular, so are R[t] and R[t,  t-l]. The reader who is already familiar with
these classical theorems can skip to formulas 3.2.5 and 3.2.6 and to the
discussion surrounding them.

3.2.1. Theorem (ìHilbert Basis Theoremî). Let R be a left Noe-
therian ring. Then the polynomial ring R[t] is left Noetherian.

Proof. Let J be a left ideal of R[t], and consider the sets I, Ij of all
leading coefficients of the polynomials in J (respectively, of the polynomials
in J of degree 5 j). Since J is closed under addition and left multiplication
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by elements of R, so are I and the Ij, hence I and the Ij are left ideals of
R. Since R is left Noetherian, we may choose a finite set of polynomials

fi(t)=a;ëP+...+a~

. , .

fn(t)=ay~+...+a; 1

E J

whose leading coefficients a;l, . . . , a> are generators of I. Let m =
maj  deg fj = maxj rj. Then if f(t) = bht”  + * *. + bo E J, the leading
coefficient bk of f may be written in the form ~~=, cjay,  Cj E R, and if
Ic 2 m, then f(t) -CT=,  cjtî-ëj  fj(t) 1ies in J and has smaller degree than
f. A simple induction thus shows that J is generated as a left ideal of R[t]
by A(t), . . . , fn(t)  and by the polynomials in J of degree < m. If we sim-
ilarly choose successively, for j = 0,. . . ,m - 1, finitely many polynomials
d, . . . ga, E J of degree 5 j whose leading coefficients generate Ij, then it

is evident that the fr (t),  . . . , fn(t) together with the d(t)  generate J as a
left ideal of R[t]. ê i

3.2.2. Corollary. If R is a left Noetherian ring, then so is the Laurent
polynomial ring R[t, t-l].

PTOC$.  R[t, t-ë1 is a localization of R[t], and a localization of a left Noe-
therian ring is left Noetherian. For a more explicit proof, let J be a left
ideal of R[t, t-l], and let Jo = JflR[t],  which is a left ideal of R[t]. (Here we
think of R[t] as a subring of R[t, t-l].) Using Theorem 3.2.1, choose finitely
many generators for JO. Then these also generate J, since for f(t) E J,
f(t) = t-ìtîf(t), and tîf(t)  E JO for n 2 0 sufficiently large. Cl

3.2.3. Theorem (ìHilbert  Syzygy Theoremî). If R is a left regular
ring, then so is R[t]. firthermore,  if R has (left) global dimension < n,
then R[t] has (left)  global dimension 5 n + 1.

Proof. By the Basis Theorem, R[t] is left Noetherian. Let M be a finitely
generated left R[t]-module. By Lemma 3.1.15, to show that M has a reso-
lution of finite type by projective R[t]-modules, it will be enough to show
that there exists a positive integer K such that Ext&(M, N) = 0 for all
R[t]-modules N, and to prove the final statement about global dimension,
we only need to show that if R has (left) global dimension < n, then K
can be taken to be n + 2.

By restriction, any R[t]-module can be considered to be an R-module,
which comes naturally with an R-module endomorphism cp defined by left
multiplication by t. So we can form the short exact sequence

0 -+ R[t] ë8R  M = R[t] @R M -i M -i 0.

Suppose that for some k, Extk(M, N) = 0 for all R-modules N. In fact,
if R has (left) global dimension 5 n, Ic can be taken to be n + 1. We have
an exact sequence

Ext&(R[t] @,R M, N) -+ Ext#M, N) + EXtk;;(R[t] ë8R  M7 N)’
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Since R[t] is free as an R-module, Ext& (R[t] @R M, N) g Ext$(M,  N) =

0 for j 2 Ic, so Ext&( M, N) = 0 for K = Ic + 1, as desired.
To complete the proof, we only need to get around one technical point:

M is assumed to be finitely generated as an R[t]-module, but may not
be finitely generated as an R-module, so that in the case where R is not
assumed to have finite global dimension, the definition of left regular ring
doesnít immediately tell us that M is of finite homological dimension as
an R-module. The following trick for getting around this may be found in
[Bass, pp. 634-6351,  though part of the idea is older. Let Me be a finitely
generated R-submodule of M which generates M as an R[t]-module, and
let M, = PM0 + . . . + MO. Then M, is an increasing sequence of finitely
generated R-submodules of M and M = 15 M,. Let

Qn = {z E MO : Pa: E Mn_l}

and observe that this is an increasing sequence of R-submodules of MO.
Since MO is finitely generated and R is left Noetherian, there is some no such
that Qn = Qn, for all n 2 no. We claim that for n > no, the homological
dimension of M, is 5 d, where d is the larger of the homological dimensions
of M,,, and Mm0 /M,,,  -1. Indeed, this is true for n = no, and if n > no and
itís true for n - 1, we can apply the exact sequence

0 + Mn_l -+ M, + Mn/Mn_l  + 0.

By choice of no and the assumption that n > no, the map Mn,,/Mno-l  ëìz”
M,/M,_l  has a trivial kernel and thus is an isomorphism. So for any R-
module N, we have an exact sequence

Ext; (M,o /M,o - 1, N) -+ Ext;(n/m,  N) --+ ExtjR(M,+r,  N),

and since Exti(M,,/M,,,_i,  N) = 0 and Exti(Mn_r,  N) = 0, we get that
Exti(M,, N) = 0. This proves the claim by induction.

To complete the proof, one needs to see that the homological dimension
of M is bounded by

limsup horn. dim. M, 5 d.

This follows from the LLl@l-sequence”

0 + 12’ Ext;--l (M,, N) --+ Ext;4(lsMnr N) + l@Ext$(M,,  N) + 0

which comes from the long exact sequence in Ext associated to the short
exact sequence

O-+ BM, (Zn)~(~or~l-zO  ?...I z,--Iî-l,...  1, @ Mn

n n

(ìn)HC,Gl-limM, -+O. ê i+
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3.2.4. Corollary. If R is a left regular ring, then so is R[t, t-l]. Further-
more, if R has (left) global dimension 5 n, then R[t, t-l] has (left) global
dimension < n + 1.

Proof. Again this follows from the fact that R[t, t-l] is a localization of
R[t]. More explicitly, if M is a finitely generated R[t, t-ël-module,  choose
generators 21, . . . , z, for M and let Ml be the finitely generated R[t]-
module they generate. Then M = R[t, t-l] @Rit] Ml, and since R[t, t-l] is
flat over R[t],

Ext$l,,,_,l(M, N) = Ext&,,&R[t, t-l]  @ë~[t]  MI, N) = Ext;@k N).

Hence the homological dimension of M over R[t, t-ë1  is the same as that
of MI over R[t]. 0

Now weíre ready to proceed with the study of the K-theory of R[t]  and
R[t,  t-l]. Note first of all that there are split short exact sequences

(3.2.5) 0 --t tR[t] + R[t] 2 R + 0,

(3.2.6) 0 + (t - l)R[t, t-l] + R[t, t-l] % R + 0,

so that the K-t,heory  of R[t] or of R[t, t-l] contains that of R as a direct
summand. The basic problem is to study the other summands, if any. It
turns out that in this context, G-theory behaves better than K-theory, at
least for rings which are left Noetherian. Hence it is worth saying something
about the functoriality of G-theory under change of rings. In general, if
ëp : R --+ S is a ring homomorphism, though it induces an exact functor
from Proj R -+ Proj S, cp* is usually not exact as a functor from R-Modf,
to S-Modf,,  hence does not induce a homomorphism Gj (R) + Gj (S).
However, if S is flat over R (which is another way of saying cp* is an
exact functor), in particular if S is projective as an R-module (via cp),  then
cp* : GJR) 4 GJS) is defined. This will be the case, for instance, when
cp is the obvious injection of R into S = R[t] or R[t, t-l].

We would like, however, to have maps Gj(R[t])  --+ Gj(R) and

GJR[t, t-l]) + GJR)

in spite of the fact that the obvious maps R[t] = R and R[t, t-l] -% R
are not flat. The device for constructing such maps, due to Grothendieck,
is based on the ideas that went into the proof of the Resolution Theorem
(Theorem 3.1.13). We use the fact that R has finite homological dimension
over R[t] or R[t, t-l]. In fact, from the resolutions

0 +(3.2.7) R[t] 4, R[t] 2 R -+ 0,

0 + R[t, t-ë1  = R[t, t-l] = R --+ 0,



2. The Grothendieck and Bass-Heller-Swan Theorems 137

we see that R has homological dimension 1 over R[t] and R[t,  t-l],  and
thus that if

0 + Mi + Mz + MS + 0

is a short exact sequence of R[t]-modules, there is a corresponding exact
sequence of R-modules

(3.2.8) 0 -+ Torfltl(R, Ml) -+ TorfLtl(R,  Mz) -+ Torfltl(R, MS)

+ R @iqt] MI + R @.~[t]  M2 ---, R @R[t] M3 --+ 0,

and similarly with R[t, t-l] in place of R[t].

3.2.9. Proposition. Let R be a left Noetherian  ring. There are well-
defined homomorphisms Go(R[t])  + Go(R)  and Go(R[t,  t-l]) + Go(R)
defined by

[Ml - [R @R[t]  Ml - Píorf[tl  CR, WI

(or the same formula with R[t] replaced by R[t,  t-l]). When R is left
regular, these agree with the usual homomorphisms &(R[t])  + Ko(R)
and Ko(R[t,  t-l]) + Ko(R).

Similarly, there are well-defined homomorphisms Gi (R[t]) + G1 (R) and
Gl(R[t, t-l]) -+ Gl(R) defined by

[M, a] H [R @.R[t]  M, 1 C3 a] - [TorfLtl(R,  M), Tor(1,  a)]

(or the same formula with R[t] replaced by R[t,  t-l])  which agree with
the usual homomorphisms Kl(R[t])  -+ Kl(R) and Kl(R[t,  t-l]) --+ Kl(R)
when R is left regular.

Proof. First consider the case of Ge and R[t].  The indicated formula
gives a well-defined homomorphism for two reasons:

(i) If M is finitely generated as an R[t]-module, then R@R[t] M is finitely

generated, and also Tori ( ,R[tl R M) is finitely generated since it may be
computed from (3.2.7) to be the kernel of multiplication by t on M. This
is a submodule of M, so it is finitely generated if M is, since we are assuming
R is left Noetherian, hence R[t] is also left Noetherian by the Hilbert Basis
Theorem (Theorem 3.2.1).

(ii) We need to show that the relations in Ge are preserved by the map.
But this follows immediately from the exact sequence (3.2.8) together with
Lemma 3.1.10. (The hypothesis on the category R-Modg needed for the
Lemma follows from the assumption that M is left Noetherian.)

If R is left regular, then so is R[t] by the Syzygy Theorem (Theorem
3.2.3). Hence by Corollary 3.1.16, the natural maps Ko(R) + Go(R)  and
Ko(R[tl>  -+ Go(W are isomorphisms. The diagram

KdW L Go(R[tl)

1 1
Ko(R) A Go(R)
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commutes since if M is a finitely generated projective module over R[t],
then To$[~](R,  M) = 0, hence [M] H [R@R[~I M] under both of the vertical
maps in the diagram.

Exactly the same reasoning works with R[t]  replaced by R[t, t-l], except
that now Torr is computed to be the kernel of multiplication by t - 1. The
proof for Gr is also almost exactly the same. 0

3.2.10.  Corollary. Let R be a left Noetherian ring. Then for j = 0, 1,
Gj(R) sits naturally as a direct summand in Gj(R[t])  and in Gj(R[t, t-l]).

Proof. If M is a finitely generated R-module, then

To?(R, R[t] @ëR  M) and Tar,* Wt, ë-l](R,  R[t,  t-l] @.R M)

are by (3.2.7) computed as the homology of the complexes

R[t] @ëR  M 4, R[t] ë8íR  M, R[t,  t-l] @ëR  M =+ R[t, t-ë]  @ëR  M.

So Torr can be seen to vanish and Tore gives back M. Hence the composites

Gj CR) + Gj (WI)
map of Proposition 3.2.9

b Gj(R)>

are the identity. 0

Now weíre almost ready for the first major result of this section, which
is Grothendieckís Theorem comparing Ge for a ring R and for the ring of
polynomials R[t] or R[t,  t-l]. It is convenient to begin by first proving the
version of the theorem for graded modules. Then we will use a trick to go
back to the ungraded case.

3.2.11. Theorem. Let R be a left Noetherian ring, viewed as a graded
ring with trivial grading concentrating everything in degree 0. Give the
polynomial ring R[tl , . . . , tr] its usual grading in which the elements tl, . . . ,
t, have degree 1. For a (non-negatively) graded left Noetherian ring, let
Grded denote K,-, of the category of finitely generated graded modules

M = @nEZ M,. Note that because of the finite generation hypothesis and
the fact that the ring is non-negatively graded, these modules are automat-
ically bounded below (i.e., given the module M, there is some ne E Z such
that M, = 0 for n < no). Morphisms in this category are required to pre-
serve the grading. Then the exact functor M H R[tl, . . . , tr] @R M induces
an isomorphism Go(R) @z Z[t] E Grded(R)  -+ Grded(R[tl,  . . . , tT]).

Proof. First of all, it is obvious that if R is trivially graded, then

Go(R)  @Q. Z[t] ” Grded(R),

since a finitely generated graded R-module is just a finite direct sum of
finitely generated graded modules M,,  each concentrated in a single degree,
and we identify [M,] E Grded(R)  with [M,] @t” in Go(R) @z Z[t].
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Next, observe that everything we have just done works with graded
modules as well. In other words, there is a map Grded(R[t]) + Grded(R)
defined by sending [M] to [R ~1~1~1 M] - [Torp[tl (R, M)[-1]], where for N
a graded module, the symbol N[r] denotes N shifted in degree by T:

WI, = K&+7..

The degree shift comes from the fact that in the category of graded mod-
ules, the resolution (3.2.7) is not as it stands a resolution by graded mod-
ules, since multiplication by t increases degree by 1, but we can replace it by

O+R[t][-1]  +R[t]+R+O.

Corollary 3.2.10 holds in the graded context, and tells us that the map
Grded (R[t]) + Grded (R) is a split surjection, with right inverse the map
[M] H [R[t] @.R  M]. Iterating all of this T times, we see that R[tl, . . . , tr]
has finite homological dimension over R, and that there is a split surjection

Grded(R[tl,.  . . , t,.])  4 Grded(R)

defined using higher Torís.
For simplicity of notation, let 5’ = R[tl,  . . . , t,.].  So it suffices to show

that the map Grded(R)  --) Grded(S)  is surjective. Let 3 be the full
subcategory of finitely generated ìR-flatî graded S-modules, whose ob-
jects are graded modules M satisfying TorT(R,  M) = 0 for j > 0. (For
instance, when r = 1, these are modules which are ti-torsion-free.)  If M
lies in this subcategory, the map Graded(S)  + GFded(R)  takes the sim-
pler form [M] H [R ~3s M]. Because of the long exact Tor sequence, F
is a category with exact sequences and contains the kernel of each of its
surjective morphisms. So the hypotheses of the Resolution Theorem (The-
orem 3.1.13) are satisfied, and the inclusion of F induces an isomorphism
&(3)  3 Grded (S). Now if M is a graded R-module, S @R M is R-flat,
so the map Gyaded  (R) -+ Grded (S) naturally factors through Ks (F), and
itís enough to show that the map GEaded(R)  + Kc(F) is surjective.

Let M be an object of 3, thus a finitely generated graded S-module,
and recall that S is left Noetherian by Theorem 3.2.1. For each integer
i, let

Fi(M) = the S-submodule of M generated by Mj, j 2 i,

Qi = Mi/Mi TI Fi_l(M).

Note that Qi is just the component of R CBS M in degree i, since (using
multi-index notation)

Mi n Fi_l(M) = 2 C tIMi-j.
j=l III=j

(The sum is really finite, since M is bounded below.) Similarly, R@s Fi(M)
vanishes in degrees > i and coincides with R @IS M in degrees 5 i.
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If Mi = 0 for i < no, then

0 = Fno_l(M)  c Fno(M) c ... c_ F+cu(M) = M,

and the filtration must terminate at some finite stage, i.e., F,, (M) = A4
for some ni, since M is finitely generated and Noetherian. Note that there
is a map of graded S-modules from S @R Mi to F,(M),  which induces by
passage to the quotient a surjective  map of graded S-modules

S @ëR  Qi + Fi(M)/E-l(M).

Here we are viewing Mi  and Qi as graded modules concentrated in the
single degree i. We will show this map is an isomorphism for each i.

For i < no or i > ni, this is obvious since both sides are zero. Suppose
we know that Torf(R,  Fi(M)) = 0, w ic is at least the case for i = n1h’ h
since M E Obj FT. From the short exact sequence of graded modules

0 + Fi_l(M)  + Fi(M)  4 K(M)/&-l(M)  + 0

and the fact that the natural map

R @s Fi-I(M)  + R 8s K(M)

is injective  with cokernel Qi, we see first that Torf (R, Fi(M)) = 0 implies
also Torf(R, Fi(M)/Fi_l(M))  = 0 and

Torf(R, Fi_l(M))  2 Torf(R,  Fi(M)/Fi-l(M)).

Then if Ki denotes the kernel of

S ë8R  Qi + Fi(M)/Fi-l(M),

tensoring with R gives the exact sequence

0 = Torf(R, Fi(M)/Fi-l(M))  + R @S Ki

--+  R@s (S@RQi) + R 8s (Fi(M)/E-l(M))

II I/

Qi = Qi.
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This shows R 8s Ki = 0, which since Ki is a finitely generated graded
module forces Ki = 0. Hence Fi(M)/Fi_l(M)  2 S@RQ~, which shows that
Fi(M)/Fi_l(M)  E 0bj.F. Substituting back the fact that Torz vanishes,
we get Torf(R, Fi_l(M))  = 0. So by descending induction on i, Ki = 0
and Torf (R, Fi(A4))  = 0 for all i, as desired.

Now to conclude the argument, note that [M] = Ci[Fi(M)/Fi_l(M)]
in Grded(S). Bu we have seen that Fi(M)/Fi_l(M)  g R[t] @.RQ~, hencet
[Fi(M)/F+l(M)]  lies in the image of GrdedR  for each i, as required. 0

As we have noted, the next theorem is really due to Grothendieck,
though this version of it first appeared in [BassHellerSwan].

3.2.12. Theorem (Grothendieck). Let R be a left Noetherian  ring.
Then the natural maps Go(R)  + Go(R[t])  and Go(R)  + Go(R[t,  t-l]) are
isomorphisms,  with inverses given by the maps of Proposition 3.2.9.

Proof. We begin with the csse of R[t];  the case of R[t,  t-l] will follow.
We need to show the map Go(R) + Go(R[t])  is surjective. The trick is to
observe that if M is a finitely generated R[t]-module, then M = R[t]  8.1~ N,
where N is a finitely generated graded R[t,  s]-module  (we give R[t, s] the
grading by the total degree of a polynomial) and where + : R[t,  s] + R[t]
is the surjective homomorphism sending t I+ t, s I+ 1. To see this, note
that M = R[t]ì/Q for some module of relations Q G R[tln,  and since M is
finitely generated and R is left Noetherian, Q is finitely generated because
of the Hilbert Basis Theorem (Theorem 3.2.1). Choose a finite set

fj = (fj,l(%  . . ., fj,&>>  7 1 I j I m,

of generators of Q and let d = max deg fj,k. Define

sj = (gj,& s>, . . . , gj,& 3)) E RIG sln, 1 I j F m,

by replacing each monomial atî in the fj,kís by atlsdml. Then each gj,k is
homogeneous of degree d, and gj,k I--+ fj,k under the map II, : R[t,  s] + R[t].
Hence if Qí is the submodule of R[t,  sin generated by the &kís,  N =
R[t, s]~/&’  is a finitely generated graded R[t,  s]-module  and G,(N) = M.

Observe in addition that the functor +* from graded R[t,  s]-modules  to
R[t]-modules is exact. Indeed, the tensor product functor is always right
exact. On the other hand, 6,(N) may also be written as N/(s - l)N, and
we have left exactness because if N is a graded R[t,  s]-module  and N’ is a
graded submodule, and if z = ~~?& xj E N, (s - 1)x E Ní,  then

(SX~-1 - xj) E N',
j=nfJ+1

SO that x,,, E Ní,  x,,+l E Ní,  . . . , and x E Ní. Thus I/J,  induces by
Proposition 3.1.9 a homomorphism Grded(R[t,  s]) + Go(R[t]).
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Now consider the diagram

Grded(R) - Grded(R[t,  s])

forget  grading
1

**
1

Go(R)  - Go(WlL

where the horizontal arrows are induced by the inclusions of R into R[t]
and R[t, s]. This diagram obviously commutes. By Theorem 3.2.11, the
top horizontal arrow is an isomorphism. From the fact that every finitely
generated R[t]-module is $,(N) for some finitely generated graded R[t,  s]-
module, the right-hand vertical arrow is surjective. Thus the bottom hori-
zontal arrow is surjective and we are done.

Now consider the case of Go(R) -+ Go(R[t, t-l]). We must show that
this map is also surjective. Since R[t, t-l] is flat over R[t] (as an R[t]-
module, R[t, t-ë1  = l&n-too  t-ìR[t],  and t-ìR[t]  is free over R[t]), the

inclusion R[t] -+ R[t,  t-l] induces a homomorphism

Go(R[tl) --+ GoW, t-l]>

by [M] H [R[t,  t-l] BR[~I  M]. The map Go(R) + Go(R[t, t-l])  obviously
factors through this map. Since we have seen that Go(R) + Go(R[t]) is an
isomorphism, we only need to show that Go(R[t])  + Go(R[t, t-l])  is surjec-
tive. But if M is a finitely generated R[t, t-ël-module,  M = R[t, t-ë]ì/S
for some finitely generated module of relations S. (We are using Corol-
lary 3.2.2.) Multiplication by tk induces an automorphism of R[t, t-ëln,
and for large enough k, it will kill off all negative powers of t in a fi-
nite set of generators for S. Thus for large enough k, tkS C R[tln,
a n d  M = tkR[t,  t-ëln/tkS is extended from a finitely generated R[t]-
module. This shows Go(R[t]) + Go(R[t,  t-l])  is surjective, completing
the proof. Cl

3.2.13. Corollary. Let R be a left regular ring. Then the natural map
Ko(R[t]) -+ Ko(R) induced by (3.2.5) and the natural  map Ko(R[t, t-l]) +
Ko(R) induced by (3.2.6) are isomorphisms. Alternatively Ko(tR[t]) and
Ko((t - l)R[t, t-ëI)  Ccorn u e in the sense of Ko for rings without unit)P t d
vanish.

Proof. This follows from combining Theorem 3.2.12, Corollary 3.1.16,
and Proposition 3.2.9. q

Remark. For rings which are not left regular, the maps Ko(R[t]) +
Ko(R) and Ko(R[t,  t-l]) + Ko(R) can have a non-zero kernel. For an
example of the former phenomenon, see Exercise 3.2.24. The kernel of the
map &(R[t, t-l]) 4 Ko(R)  actually consists of two different parts, both
of which can be non-zero. The first is related to the kernel of Ko(R[t]) +
Ko(R);  the second is the functor K-l(R)  which will be studied in the next
section.
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3.2.14. Definition. If R is any ring with unit, we define NKj(R),  j = 0
or 1, to be the relative K-group Kj(R[t],  tR[t]). By the split short exact
sequence (3.2.5),  this is the same as the kernel of the map on K-theory

induced by R[t] 2 R. (Recall Exercises 1.5.11 and 2.5.19.) Corollary
3.2.13 states that NKo(R) vanishes if R is left regular.

Next we come to the study of K1 and G1. We would like to show as in the
case of Kc that Gl(R[t])  Z Gl(R)  for R left Noetherian, so that NKl(R)
vanishes if R is left regular. The case  of Laurent polynomials will now be
a bit different, since as we remarked at the beginning of this section, there
is reason to believe Kl(R[t, t-l]) should be related to Kl(R) @ Ko(R),  not
just to Kl(R).

First we have the analogue of Theorems 3.2.11 and 3.2.12 for GI.

3.2.X. Theorem. Let R be a left Noetherian ring, viewed as a graded
ring with trivial grading, and Jet R[tl, . . . , t,.] be given its usual grading. For
a (non-negatively) graded left Noetherian ring, Jet Gyded  denote Kl of the
category of finitely generated graded modules M = BnEZ M,, . (Morphisms
in this category are required to preserve the grading.) Then the exact
functor M H R[tl, . . . , tT] ë8~  M induces an isomorphism Gl(R)  @Z Z[t] Z
Gyded(R)  -+ Gytied(R[tl,.  . . ,&I).

Proof. For simplicity of notation, let S = R[tl, . . . , t,.]. As in the proof of
Theorem 3.2.11, it suffices to show that the map Gyded(R)  -+ GFaded(S)
is surjective. As in the proof of Theorem 3.2.11, let 7 be the full sub-
category of the category of finitely generated R-flat graded S-modules,
whose objects are graded modules M satisfying Torf(R, M) = 0 for j >
0. These include the finitely generated free graded modules, and any
graded morphism lifts to a morphism of a free graded module. As in
the proof of Theorem 3.2.11, the hypotheses of the Resolution Theorem
(Theorem 3.1.14) are satisfied, and the inclusion of T induces an isomor-

phism K1 (F) -% Gyded(S). Also the map GFded(R)  --) Gyded(S)
naturally factors through K1(9), and itís enough to show that the map
Grded(R) + Kl(3) is surjective.

Furthermore, by the method of the proof of Theorem 3.2.11, it is enough
to consider classes in Kl(3) defined by an automorphism (Y of S ë8~  M,
where M is a graded R-module. Then since cr is required to be grading-
preserving, (Y induces an automorphism of (S @R M)n = M, and since M
generates S@R M as an S-module, Q is determined by its restriction to M,
i.e., (Y = l@ëcy[~.  Thus the map Gyded(R) -+ Gyaded(S)  is surjective. El

3.2.16. Theorem (Grothendieck Theorem for GI). Let R be a left
Noetherian ring. Then the natural map Gl(R)  --)  Gl(R[t])  is an isomor-
phism, with inverse given by the map of Proposition 3.2.9.
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Proof. As in the proof of Theorem 3.2.12, we consider the diagram

Grded(R) - Gyded(R[t,  s])

forget grading
1

6
1

G(R) - G(RM),

where the horizontal arrows are induced by the inclusions of R into R(t]
and R[t, s]. This diagram obviously commutes. By Theorem 3.2.15, the
top horizontal arrow is an isomorphism. So it will be enough to show that
the vertical arrow on the right is surjective. This is a bit more delicate
than in the case of Ge since we need to consider not just modules but also
their automorphisms. But ?I, : R[t, s] + R[t] factors through the inclusion
R[t, s] L) R[t, s, s-l], so closer examination shows that the right-hand side
of the diagram above can be factored as

Gyded(R[t,  s])

A4
11. 1

JG

yded(R[t,  s, s-l])

G1(R[tl),
where Gyded(R[t, s, s-l ]) is defined using Z-graded modules that are not
necessarily bounded below. (If N is a graded R[t, s, s-ël-module,  then
multiplication by s induces isomorphisms Nj + Nj-1 for all j, so N canít
be bounded below unless itís the zero module.) Furthermore, if M is an
R[t]-module, then R[s,  s-l] @IR A4 can be given the structure of a graded
R[t, s, s-ë]-module  F(M) ( in which t acts by the original action of t com-
posed with multiplication by s), and the functors $J* and F are inverses to
one another, defining an equivalence of the category of finitely generated
R[t]-modules with the category of finitely generated graded R[t, s, s-l]-
modules. So

Gyded(R[t, s, SCí])  + Gl(R[t])

is an isomorphism and we need only see that

Gyded(R[t, s]) + Gyded(R[t,  s, s-l])

is surjective.
Thus let N be a finitely generated graded R[t, s, s-ë]-module  and let

cr be a grading-preserving automorphism of N. Let P = @r=, iV, be the
R[t, s]-module  generated by No. Then P is finitely generated and (Y maps
P into itself, and N = R[t, s, s-l]  @R[t,  so P. Since obviously (Y = 1 @((YIP),
this shows [N, o] is in the image of Gyded(R[t,  s]). So

Gyded(R[t, s]) + Gyded(R[t,  s, s-l])

is surjective. 0
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3.2.17. Corollary. If R is a left regular ring, then the natural map
Kl(R[t])  + Kl(R) is an isomorphism. In other words, NK1 (R) = 0.

Proof. This follows from combining Theorem 3.2.16, Corollary 3.1.16,
and Proposition 3.2.9. q

We come now to the case of the Laurent polynomial ring R[t, t-l]. We
begin with Gi and then go on to KI.

3.2.18. Proposition. Let R be a left Noetherian ring. Then there is a
natural embedding of G1 (R) @ Go(R) as a direct summand in Gl(R[t,  t-l])
via

+ : ([M, a], [Mí])  - [R[t, t-l] ë8í~  M, 163 a] + [R[t, t-l] ë8íR  Mí,  t C3 I] .

The left inverse Q to @ is given by Gl(R[t,  t-l]) -+ Gl(R) as defined
in Proposition 3.2.9, together with the following map Gl(R[t,  t-l]) -+
Go(R):  Let N be a finitely  generated R[t,  t-l]-module,  p E Aut N, and
Jet N’ be a finitely generated R[t]-submodule  of N that generates N as
an R[t,  t-I]-module. Then for suitably large Jc, tîP  maps N’ into it-
self and coker((típ)]N/) is a finitely generated R-module. Map [N, /3]  E
Gl(R[t,  t-l]) to

[coker((tîP)]Nr)]  - k[coker(tJNt)]  E Go(R).

Proof. It is clear that Cp defines a homomorphism, and we already ver-
ified in Corollary 3.2.10 that it embeds Gl(R) in Gl(R[t,  t-l]) as a direct
summand. It therefore suffices to check that the indicated formula gives a
well-defined homomorphism Gl(R[t, t-l]) + Go(R),  and that the compos-
ite Q o @ is the identity.

The first problem is to show that, given a finitely generated R[t,  t-l]-
module N and ,f3 E Aut N, [coker((tîfl)]Nt)]  - k[coker(t]nrt)]  E Go(R) is
independent of the choice of N’ and of k. First of all, suppose Ní is fixed
and tî/3  maps Ní into itself. Note that (tk/31Nt) is an injective  R[t]-module
homomorphism since it is the restriction of an automorphism of N. If we
replace k by k+j, j > 0, then tî+j/?(Ní)  C tîP(Ní)  c Ní, and tk/? induces
an iaomorphism

Ní/tjN’ -+ tîP(Ní)/tî+j/3(Ní).

Hence, in Ge(  R), we have

[coker((tkp)]Nr)]  + [coker(tj]Nr)]  = [coker((tî+jp)]Nf)].

In particular, iterating this with /3 = 1 shows that

[coker(tj]Nt)]  = j[coker(t]Nl)],

and so

[coker((tî+j/?)]N~)]--(k+j)[coker(tJNr)]  = [coker((tkp)JNt)]-k[coker(tJNj)].
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Thus for fixed Ní we have independence of k.
Now suppose N” is another finitely generated R[t]-submodule  of N that

generates N as an R[t, t-l]-module. Then

N = z t-jN’  = 5 t+Nî,

j=o j=o

so for suitably large j, tj N” C Ní. If we choose k large enough so that tî,f?
maps Ní and Nî into themselves, then (tj+lep)N”  C tjN”  n (tî,L?)N’  2 N’
and in Gc( R) we have

[Ní/(tk@Ní]  + [(tî/3)Ní/(tj+ì@Nî)]  = [Ní/tjNî]  + [tjNî/(tj+k/3)Nî]

or
[Ní/(tíP)Ní]  + [Ní/tjNî]  = [Ní/tjNî]  + [Nî/(tk@)Nî],

so [Ní/(tk,d)Ní]  = [Nî/(tîp)Nî].  This proves independence of the choice
of N’ and shows 9 is well defined.

Next we have to show that \E is a homomorphism. If fi and y are two
automorphisms of N, and if we choose k large enough so that tîP  and tîy
both map Ní into itself, then (t2î@y)N’  2 (tkp)N’ fl (tky)N’ c Ní, so in
Go(R) we have

[Ní/(t2kPr)Ní]  = [Ní/(tîy)Ní]  + [(tkr)Ní/(t2î/3r)Ní]

= [Ní/(tîy)Ní]  + [Ní/(tk@Ní],

showing that Q([N,  ,&]) = Q([N,  /?I) + 9([N, 71). It remains to show that
9 is additive on short exact sequences. Suppose

is a short exact sequence of finitely generated R[t, t-l]-modules, and p
is an automorphism of N2 that maps Ni onto itself and that induces an
automorphism y of Ns. Choose a finitely generated R[t]-submodule  Ni of
N2 that generates N2 as an R[t, t-ël-module.  Let N: = Ni n Ni, and let
Ni be the image of Nl in Na. Then Ni and Ni are finitely generated and
generate Ni and Ns, respectively. If we choose k so that tkp maps Ni and
Ni into themselves, then if z E Ni n (tîP)Ni,  we have (tîP)-ëcc  E NI n Nl
(since Ni is stable under (tîP)-ë),  which is Ni. Hence Ni n (tk,B)Ni  =
(tîP)Ni  and so in Go(R),

P%l(tkW$l  = Pi/ (N; + (tkPP%)l + [(N; + VîPP;)  &ìP>N;11
= P%l(tî4Nil+  Pi/ (N: n @ìPPí$)l
= [N;/(tkr)N;l  + [N:I(tîP)N;l.

It follows that Q([Ns, 71) + XP([Ni, PIN,]) = *([Nz, P]), so 9 is additive
on short exact sequences.
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Finally, we show that the composite Q o @ is the identity. If M and M’
are finitely generated R-modules and cx E Aut M, then

\k o Cp ([M, a], [Mí]) = ë32  ([R[t, t-l] @R  M, 163 a]
+ [R[t, t-l]  @ëR  M', t @ l])

= ([M, 4 + [Mí,  11,

[coker(l@  ~)IR[~J@~M]  + [coker(t@ ~)(R[~J~~M~])

= ([M, aI +O, 0 + [M'l) = ([M, a], [M']),

as required. 0

3.2.19. Theorem.
Q ofGl(R)@Go(R)
isomorphism.

Let R be a left Noetherian ring. Then the embedding
into Gl(R[t, t-l]),  defined in Proposition 3.2.18, is an

Proof. We need to show that @ is surjective.  The intuitive idea is
easy to explain. Suppose [N, p] E Gl(R[t,  t-l]) is defined by a finitely
generated R[t,  t-l]-module  and p E Aut N. We need to show that if
[N, PI +-+ 0 in Go(R), then [N, PI comes from a class in Gr (R). Let
Ní be a finitely generated R[t]-submodule  of N that generates N as an
R[t, t-ël-module,  and suppose for simplicity that p maps Ní into itself.
The statement that [N, fl] H 0 in Go(R)  then means that [Ní/P(Ní)]  = 0
in Go(R).  If Ní/P(Ní) were literally the zero-module, this would mean that
p restricts to an automorphism of Ní. But then N = R[t,  t-l]  @R[t] N’
and P = 1 C%J P(w, which shows that [N, p] lies in the image of the map
Gi(R[t])  + Gl(R[t, t-l]). Since (using Theorem 3.2.16) we have a com-
mutative diagram

Gl (R)

G WI) - G(R[t, t-l]>,
this shows [N, p] is in the image of Gl(R).

To make this argument rigorous takes a bit of work, and can be done in
a number of ways. The easiest is probably to appeal to the method of proof
of Theorem 3.2.16, which shows that we can take Ní = R[t] ~3.1~ P, with
P a finitely generated graded R[t,  s, .sml ]-module, and that /3 extends to a
graded automorphism of R[t,  t-l, s, s-l]  @R[t,  S, S-~~  P. Instead of assuming
that [N, p] H 0 in Go(R), weíll make no assumption on /3 and show how
to write [N, p] in terms of elements in the image of a. First multiply p by
a suitably high power of t so that p maps Ní into itself. Then there will be
an induced grading-preserving endomorphism fi of P. Let Pí = @,ì=,  P,
be the graded R[t, s]-submodule  of P generated by the elements of degree
0; a maps P’ into itself.

By the method of proof of Theorem 3.2.15, we may reduce to the case
where P’ = R[t, s] @R M, M a finitely generated graded R-module, and /? is
determined by a graded endomorphism a of M. But then N = R[t, t-l] @R
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M and /3 induces (Y on the quotient M Z N/(t - l)N. Since /3 is invertible,
cx is in fact an automorphism of M. We may identify N with enEZ tîM

and write @(tncc)  = xjEz&(z)t n+i for z E M, where almost all of the
pi(x) are 0, and Cj &(x) = CX(X). From this one can see M is an iterated
extension of R-modules Mi on which /3 takes the simple form tjcxj, and we
have

[N, ,L?]  = C [R[t, t-ë]  ë8R Mi, t’ @ aj]

jCZ

= C ([R[t,  t-l] 8~ Mj, ti @ l] + [R[t,  t-ë1  ë8R  Mj, 18 aj])

jEZ

which shows @ is surjective. Cl

3.2.20. Corollary (Bass-Heller-Swan). Let R be a left regular ring.
Then there is a canonical isomorphism K1 (R[t,  t-l])  E ICI(R) @ KC,(R).

Proof. This follows from combining Theorem 3.2.19, Corollary 3.1.16,
and Proposition 3.2.9. Cl

Since we are also interested in rings which are not left regular or even left
Noetherian, it will be convenient to try to analyze Kl(R[t,  t-l])  directly,
without going through the intermediary of G-theory. This will lead to
another proof of the Bass-Heller-Swan Theorem (Corollary 3.2.20) as well
as a motivation for the definition of negative K-theory in the next section.

3.2.21.

(4

(b)

Lemma ([BassHellerSwan]).  Let R be a ring. Then

Any matrix B E GL(R[t]) can be reduced, module GL(R) and
E(R[t]), to a matrix of the form 1 + At, where A is a nilpotent
matrix with entries in R.
Any matrix B E GL(R[t, t-l]) can be reduced, module GL(R)

and E(R[t, t-l]),  to a matrix of the form
( )

ìi y (1 + A(t - l)),

where A is a matrix with entries in R and A(1 - A) is nilpotent.

Proof. (a) Write B = Bo + tB1 + . . . + tdBd, where the Bj are matrices
with entries in R. We will first show by induction that B can be reduced
to something with d 5 1. So assume d > 1. Then if N stands for ìis equal
to, modulo GL(R) and E(R[t]),”  we have
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(since we can add a multiple of the bottom row to the top row)

(since we can subtract tx (the last column) from the first column).

Now we have something of degree 5 d - 1. Continuing by induction,
be reduced to something with d < 1.

Bean

If we can reduce to d = 0, the assertion of the Lemma is obvious. Oth-
erwise, we can reduce to the case d = 1, and assume B = Be + tB1. Since
B is invertible as a matrix over R[t], Be must be invertible. Factoring out
Be, we reduce B to the form 1 + At. This must be invertible as a matrix
overR[t],sowehaveB-l=Cs+tCr+... + tíC,  for some Cj ëS and some
integer r. Multiplying out the equation

1 = (1 +At)(Cc  +tCl +...+tíC,)  = (Co+ tC1 +...+tíC,)(l  +At),

we obtain the equations

1 = CrJ, 0 = ACc + Cr = CeA + Cl, . . . ,

0 = AC,_1  + C, = C&IA + C,., 0 = AC,. = C,A.

Solving inductively, we obtain Cc = 1, Cr = -A, . . . , Cj = (-A)j,  and A
is nilpotent since AT+l = 0.

(b) Since we are allowed to multiply B by a power oft, we may suppose B
involves only non-negative powers of t. Then we may repeat the same trick
and come down to the case where B = Be + tB1 = (Be + Br) + (t - 1)Br.
Since B is invertible as a matrix over R[t, t-l], Be + B1 must be invertible.
Factoring out Be + B1, we reduce B to the form 1 + A(t - 1) = 1 - A + At.
This must be invertible as a matrix over R[t, t-l], so after multiplying by
a power of t it has an inverse which is a matrix over R[t]. By the same
reasoning as in (a), (1 - A)A is nilpotent. 0

3.2.22. Theorem (Bass-Heller-Swan). Let R be a ring. Let Nil R be
the category whose objects are pairs (P, A), where P is a finitely generated
free R-module and A is a nilpotent endomorphism of P. The morphisms
(P, A) + (Pí, Aí) are R-module homomorphisms T : P + P’ such that
AíT  = TP. Note that Nil R is a category with exact sequences, and Ke
of this category contains an obvious homomorphic image of Z coming from
the full subcategory of objects with A = 0. Then

(4

(b)

Kr (R[t]) = Kr (R) $ NK1 (R), where NK1 (R) is canonically iso
morphic to &(Nil  R). (The notation Kc means Ke divided out
by the canonical image of Z.)
There is a natural splitting of Kl(R[t,  t-l])  as Kl(R) @Kc(R)  @
NKl(R)  $ NK1(R).  The two copies of NKr(R)  come from the
embeddings R[t] c-) R[t,  t-ë1  and R[t-ë1  L) R[t,  t-l].
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Proof. (a) We already know there must be a splitting

and (a) of Lemma 3.2.21 shows that NKr(R)  is the image in Kr(R[t]) of
matrices of the form 1 + At, A nilpotent. We define a map NKr(R)  +
I?e(Nil R) by (when A is a nilpotent n x n matrix)

NK1(R)  3 [l + At] H [(Rî,  A)] E &,(Nil R).

To check that this is well defined, note that if 1 + At is conjugate to 1 +
Aít under GL(n, R[t]), then sending t I-+ 1, we see 1 + A is conjugate to
1 + Aí under GL(n, R), hence A is conjugate to Aí under GL(n,  R) and
[(Rî, A)] = [(Rî, Aí)] in Ke(Nil R). Furthermore, if we replace l,+At  by
the (n+Ic)  x (n+k)  matrix (ln+At)@(lk),  this corresponds to replacing A
by A@Ok  and [(Rî, A)] by [(Rî, A)] + [(Ríì,  O)]. This element is different
in Ko, but the same in &, so the map NKl(R) -+ &(Nil  R) is well
defined. Finally, the map is a homomorphism since

[l + At] + [l + Aít] = [(l + At) @ (1 + Aít)] = [l + (A @ Aí)t]

++ [(Rî,  A)1 + [(Rn, -4í11.

To show the map is an isomorphism, we construct its inverse by the
obvious formula [(Rî, A)] H [l + At]. Note that [l + At] indeed defines a
class in NKl(R), since for any nilpotent A, 1 + At E GL(R[t]) and maps
to 1 in GL(R) under the homomorphism defined by t H 0. Since we know
all classes in NKr (R) can be represented in the form [l + At], we will be
done if we can show that the map is indeed well defined. Clearly the class
of 1 + At doesnít change if we replace A by A @ 01, (which corresponds to
changing our class in &(Nil  R) by something in the canonical image of
Z). So we only need to check additivity on exact sequences. Suppose

is a short exact sequence of finitely generated free R-modules and we have
nilpotent endomorphisms Aj E End(Pj) such that AP(YI = alAl,  Asa~  =
azA2.  This means that also (1 + A t)2 a1 = a~(l + Alt)  and (1 + Ast)az  =
as(1 + A&, so

[l + A& = [l + Ad] + [l + Ad] in Kl(R[t]),

and weíre done.
(b) The maps Cp and \E from Proposition 3.2.18 can be defined in K-

theory instead of in G-theory, by exactly the same formulas. The only
point that needs checking is that the second component of * indeed sends
Kl(R[t,  t-l])  into Ko(R)  and not just into Go(R). To check this, we use the
fact that the cokernel of the map Kl(R) -+ Kl(R[t,  t-l])  is described by
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Lemma 3.2.21(b) as being generated by matrices of the form l+A(t-1)  with
A an n. x n matrix over R and (1 - A)A nilpotent. Equivalently, A = P+N,
where P is idempotent, N is nilpotent, and P and N commute with each
other. To see this, suppose Aí( 1 - A)í = 0. Then since the polynomials
zT and (1 - z)’ are relatively prime in Z[z],  there are polynomials p(z)
and q(z) with integer coefficients such that p(z)zY  + q(z)(l - XC)’ = 1.
Let P = p(A)Aí.  Then 1 - P = q(A)(l  - A)í and since Aí(1 - A)í =
0, P(l - P) = 0. This shows P is idempotent, and P is a polynomial
in A. If N = A - P, then N is also a polynomial in A, so P and N
commute with one another. Furthermore, N = A (1 - p(A)Aí-l)  and
N = (A - 1) + (1 - P) = (1 - A) (-1 + q(A)(l  - A)T-l),  so N is divisible
by both A and 1 - A, hence divisible by A(1 - A), hence nilpotent. But
then R[t]ì/  (1 + A(t - 1)) R[tln E im P is projective as an R-module. So
Kr (R) @ Ko(R) naturally embeds as a direct summand in Kr (R[t]).

The cokernel of this embedding is once again described by Lemma 3.2.21
(b) as being generated by matrices of the form 1 -I- (P + N) (t - l), where
P is idempotent, N is nilpotent, and P and N commute with one another.
Thus 1 + (P + N)(t - 1) corresponds to a pair of nilpotent matrices, PN
and (1 - P)N. These correspond to the two copies of NKr (R). The rest
of the proof is just as in part (a). Cl

Remark. This explains a commonly used notation: the group NKl(R)
is often called Nil R because of (a) of the theorem.

3.2.23. Exercise (Non-triviality of NK1). Let k be a commutative
field, and let R = k[t]/(t2).

(a) Show that R is a local ring and thus compute Ko(R)  and Kl(R).
(b) Let s be another indeterminate and compute the group of units R[s] x

in R[s].
(c) From the exact sequence (split on the right)

NKl(R) -+ KI(R[s])  s Kl(R),

deduce that NK1 (R) is not finitely generated (as an abelian  group). (Recall
that since the ring R[s] is commutative, R[slX -+ Kl(R[s]).)

3.2.24. Exercise (Non-triviality of NKo).  Let k be a commutative
field, and let S = k[t2,  t3].

(a) From the split exact sequence

0 + t2k[t]  -+ S % k + 0

and the long exact K-theory sequence coming from the short exact sequence

0 + t2k[t]  + k[t] + k[t]/(t2)  --f 0,

compute Ko(S).  (Hint: use Exercise 3.2.23(a) and the fact that k[t] is a
Euclidean ring.)
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(b) Let s be another indeterminate and similarly use the short exact
sequences

0 -+ t%[t,s]  + S[s]  % Ic[s]  + 0

and
0 -+ t%[t, s] --+ /+, s] + Ic[t, s]/(t2) 4 0

to relate Kc(S[s])  and thus NKs(S)  to NKi(R)  in Exercise 3.2.24(c). (Re-
call that Ke (S[s])  g Ks (S)@NKc (S) .) Use Grothendieckís Theorem which
implies that Ke(lc[t,  s]) = 0. Deduce that NKc(S) is not finitely generated
(as an abelian  group).

3.2.25. Exercise. Give another proof of Corollaries 3.2.17 and 3.2.20
from Theorem 3.2.22, by showing that the group NK1 described in that
Theorem has to vanish if R is left regular. (Hint: if A is an n x n matrix
over R and Aí = 0, it gives a filtration of the free module R” by

O=imArCimAr-ëC...- _ &imAc Rn

If R is left regular, the subquotients can be resolved by finitely generated
projective modules.)

3.2.26. Exercise. Let R be any ring.
(1) Show that NKl(R[t,  t-l]) contains NKl(R)@NKo(R)  as adirect

summand. You can do this by computing Kl(R[t,  t-l, s]) two
ways.

(2) [Vorst] A ring R is called j-regular if Kj (R[tl, . . . , tT]) E Kj (R)
for any T. By Corollary 3.2.17, a left regular ring is l-regular.

Show that NKl(R[t])  = 0 implies NKl(R[t,  t-l]) = 0, by not-
ing that a nilpotent matrix over R[t, t-l] is of the form tpn x

(a nilpotent matrix over R[t]). Then deduce from (1) that if R is
l-regular, NKo(R) = 0.

(3) Iterating the result of (2), prove the multivariable version of this,
that l-regularity implies O-regularity. (However, there are O-regular
rings which are not l-regular.)

3.2.27. Exercise.

(1) Show from the Bass-Heller-Swan Theorem that if 7r is any group,
then Wh(rxZ)  Z Wh(7r)@Ke(Z7r)$(NKi(Zrr))2.  (We are mixing
additive and multiplicative notation here.)

(2) Deduce that the Whitehead group of any free abelian  group van-
ishes. (Hint: Z[tl, tlí,  . . . , t,, t;ë]  is regular. Why?)

(3) See if you can find a topological interpretation of the formula in
(l), and in particular a relationship between Wall finiteness ob-
structions for spaces with fundamental group r and Whitehead
torsion obstructions for spaces with fundamental group 7r x Z.

3.2.28. Exercise. Let k be a (commutative) field. Show that Corollary
3.2.20 applied with R = k amounts to the assertion that SK1 vanishes for
the PID k[t, t-l]. Can you prove this directly using the results of Chap-
ter 2?
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3.2.29. Exercise [Farrell]. Let R be a ring, and view NKl(R)  as being
represented by classes of nilpotent matrices N over R, as in Theorem 3.2.22.

(1) Fix an integer n, and let L, : R[P] L) R[t] be the inclusion. Note
that R[t]  is a free R[tî]-module  of rank n, and thus that an T x T

matrix over R[t]  gives rise to an rn x rn matrix over R[P].  In
this way a transfer map L: : Kl(R[t])  -+ Kl(R[tî])  is defined.
Show that L: o (Lo)*  is multiplication by n on KI(R[P])  (if we use
additive notation).

(2) Suppose N is a nilpotent r x r matrix over R, so that 1 + Nt
represents a typical element of NKr (R). Show that L:( 1 + Nt) is
given by the block matrix

0 0 .-. 1 0
0 0 . . . N 1

(3) Let A be the strictly lower-triangular block matrix

A =

1 0 . . . 0 0
Nl 0 0
ONí.. ;

0 0 .*. 1 0
0 0 . . . N 1 1.

Show that if N” = 0, then A-ëM  is strictly upper-triangular and
hence elementary, and thus that ~t([l  + Nt]) = 0 in Kl(R[tî]).
Conclude that if NKl(R)  is finitely generated, then there is some
integer no such that L: = 0 on NKi (R) for all n 2 no.

(4) Using (l), deduce that if there is a prime p such that multiplication
bypisinjectiveon NKl(R),  thenLzo(L,),([l+NP])  # Oforn =pi
a power of p and for all nilpotent matrices N.

(5) Conclude from (3) and (4) that if NKl(R)  is finitely generated and
non-zero, there can be no prime p such that multiplication by p is
injective  on NKl(R),  which contradicts the structure theorem for
finitely generated abelian  groups. Therefore if NKl(R)  # 0, then
NKi(R)  is not finitely generated.

3. Negative K-theory
One immediate consequence of the Bass-Heller-Swan Theorem (Theorem
3.2.22) is that for any ring R,

Ko(R) = coker  (Kl(R[t])  @ K1(R[tel])  --+ Kl(R[t,  t-l]))  .



154 3. KO and K1 of Categories, Negative K-Theory

This motivates the following inductive definition:

3.3.1. Definition. For any ring R, K-l(R)  is defined to be the cokernel
of the natural map Ko(R[t])  @Ko(R[t-l]) -+ Ko(R[t, t-l]). (Since we have
defined Kc even for rings without unit, it is not necessary here to assume
that R has a unit.) By Corollary 3.2.20, K-l(R)  vanishes if R is left
regular. Then for any n > 1, we define K_,(R) to be the cokernel of the
natural map K_(,_1)(R[t])@K_(,_1)(R[t-ë])  + K_(,_l)(R[t, t-l]). Note
that this is functorial in R, since K_,(R) is a natural direct summand in
Ko(R[ti,  t;ë,  . . . , t,, t,ë]).  We a so e1 d fine NK_,(R) to be the cokernel
of the natural map K_,(R) + K_,(R[t]). (Because of the splitting map
R[t] --t R sending t I+ 0, K_,(R[t])  splits as K_,(R) @ NK_,(R).) By
iterated use of the Syzygy Theorem (Theorem 3.2.3) and Corollary 3.2.20,
K_,(R) and NK_,(R) vanish for all n if R is left regular.

The following theorem shows that Theorem 3.2.22 has an exact analogue
for Ko, using the new functor K-1.

3.3.2. Theorem. For any ring R, there is a natural splitting

Ko(R[t, t-l]) = Ko(R) CB K-I(R) CD NKo(R) @ NKo(R),

where the two copies of NKo(R)  come from the embeddings

R[t] w R[t, t-ë1  and R[t-ë1  L) R[t, t-l].

Proof. Theorem 3.2.22 says that for any ring, Ko(R)  naturally sits as a
direct summand in K1 (R[tl, t,ë]).  It also says that for any ring S, there
is a natural exact sequence

0 + Kl(S) + Kl(S[tl) @ K1(W1l)  + Kl(S[t,  t-l]),

and the cokernel of the map on the right splits. Let us put these two
statements together, but taking S = R[tl, t,ë].  Then Ko(R)  naturally sits
as a direct summand in K1 (S), and similarly Ko(R[t]), Ko(R[t-ëI),  and
Ko(R[t, t-l]) naturally sit as direct summands in Kl(S[t]),  in Kl(S[t-l]),
and in Kl(S[t, t-l]), respectively. Furthermore, the diagram

0 ---+ K,,(R) - Ko(R[t]) $ Ko(R[rl]) -

0 - KI(S) - Kl(S[tl) @K1(S[t-ëI) -

- Ko(R[t, t-l]) + K-l(R) - 0

+ K1(S[t, t-l]) = Ko(S) - 0
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clearly commutes. The bottom row is exact, and the top row is exact on
the right by definition of K-r(R)  and on the left since Kc(R) --+ &(R[t])
is split injective.  Let us show that the top row is also exact at Ke(R[t])  @
KO(R[t-l]), and that the top exact sequence splits on the right. To prove
the first of these statements, note that by commutativity of the diagram,
the kernel of Ko(R[t])  CB Ko(R[t-l])  -+ Ko(R[t, t-l])  may be identified
with the intersection in Kr(S[t])  CB Kr(S[t-l])  of the images of Ko(R[t])  @
KO(R[t-l]) and of Kr(S). This is obviously Ko(R). To construct a splitting
m a p  K-r(R)  + Ko(R[t,  t-ël), note that the projection of Kr(S[t, t-l])
onto Kr (S) @ NKr (S) @ NKr (S) killing Kc(S) restricts to a projection of
Ko(R[t,  t-l])  onto Ko(R) CD NKo(R)  6~ NKo(R)  killing K-l(R), hence the
latter must split off as a direct summand. 0

Note that iteration of the same argument clearly proves the following.

3.3.3. Theorem (ìFíundamental Theorem of Algebraic K-
Theoryî). For any ring R and any n 2 1, there is a natural splitting

K-(,-r)(R[t, t-ëI)

2 K-(,-r)(R)  @K-,(R) @ NK-(,-r)(R)  @ NK-(,-r)(R),

where the two copies of NK_(,_l)(R)  come from the embeddings R[t] -+
R[t, t-l] and R[t-ë1  L) R[t,  t-l].

The advantage of the construction of the functors K_,(R) is that it now
gives us a way of extending the exact sequence of an ideal arbitrarily far to
the right, and thus a way of computing Ko(R/I)  from information about
R and the ideal I.

3.3.4. Theorem. Let R be a ring with unit, and let I be a two-sided ideal
in R, viewed as a ring without unit. Then the exact sequence of Theorem
2.5.4 extends to an exact sequence

... --)  Ko(R) 3 K,,(R/I)  2 K_1(I)

4; K_1(R)  % K_l(R/I)  -% K_z(I)  k ... ,

where L* and q* are the maps induced by the inclusion L : I - R and by
the quotient map q : R + R/I.

Proof. Take S = R[t,  t-ë1  and J = I[t, t-l]. To avoid unnecessary
extra notation, again denote the inclusion J q S by L and the quotient
map S + S/J Z (R/I)[t,  t-l] by q. Then J i S, and by Theorem 2.5.4,
there is a natural exact sequence

Kr(S)  3 Kl(SIJ) 5 KO(J)  4; Ko(S) % KO(S/J).

On the other hand, we have natural embeddings of Ko(R)  in Kr (S),

Ko(R/I)  in Kl(S/J), K-I(I) in Ko(J),  etc., as direct summands, and

Kr(S) -% KI(SIJ) K , , ( J )  4; K , , (S )  3 Ko(S/J)

Ko(R) a Ko(RII), K_1(I)  4; K-l(R) 3 K-l(R/I)
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commute. We also have a commutative diagram with exact rows and
columns

0  - Ki(R) - Kl(W @ Kl(W1l) -

II
4.

1
Q*

1

0 - Kl(RII) - Kl((RIl)[tl)~K1((RIl)[t-lI)  -

I I
a
1

a
1

0  - &(I) - Ko(W])  @ Ko(Wíl) -

II ë* 1 L* 10 - Ko(R) - Ko(W) @ ~o(Wíl> -

II 9. 1 Q* 1
0 - Ko(R/I) - Ko((WQPl) @ ~o((w~)~~-ël)  -

. . . - Kl(W,  t-l]) = &(R) - 0
Q. 1 II. . . - K1((R/I)[t,  t-l]) = &(R/I) - 0
a1 II. . . - Ko(W, t-l]> = K-1(1) - 0

L* 1 I/* * * - Ko(R[t, t-l]) = K-1(R) - 0
Q. 1 II* . . - Ko((R/l)[t, t-l]) = K_1(R/I) - 0.

A diagram chase now gives the desired exact sequence as far as the
K-I(WI),  bu we can iterate the construction to include K-2 terms andt
eventually K_, terms for all 0. Cl

3.3.5. Examples. (Cf. Examples 1.5.10 and 2.5.6.)

(a) Suppose R = Z and I = (m), where m > 0. Then R/I is a product
of k local rings, where k is the number of distinct prime factors
of m, and we determined earlier that Ko(R/I) Z Zk and that the
map Ko(R) -+ Ko(R/I)  may be identified with the diagonal map
Z + Zî.  The cokernel of this map is free abelian  of rank k - 1.
Since R is a PID, it is certainly a regular ring, hence K-i(R) = 0.
Therefore the exact sequence of the ideal terminates with Kc(R) +
Ko(R/I) + K-l(I) --+ 0, and K_ i (I) is free abelian  of rank k - 1.

Looking at the rest of the exact sequence (and using the fact
that all negative K-groups of R must vanish) also shows that
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K_,(R/I) E K-,-l(I)  for n 2 1. We can use this fact to compute
the rest of the negative K-groups of I. For instance, suppose m
is square-free, i.e., a product of distinct primes. Then R/I is a
product of fields, hence is left regular, so all the negative K-groups
of R/I must also vanish. Hence K_,(I) = 0 for n > 2, though
K-i (I) will be non-zero if Ic > 1.

If, say, m = p2 with p prime, then R/I is local but not regular
(see Exercise 3.1.24). Thus K-i(I)  = 0 from the exact sequence,
but, at least a priori, R/I could have plenty of negative K-groups.
However we have an exact sequence

0 -+ m -+ Z/(pî)  + F, --+ 0,

where m = pZ/(pî)  is the maximal ideal of Z/(p2). Since m2 = 0,
it is easy to see that for any n,

m[ti, t;l, . . . . t,, t;ë]  = radZ/(p2)[ti,  t;ë,  . . . , t,, t;ë],

with quotient lFP[ti,  t;ë,  . . . , t,, t;ë]  . By the argument of Theo-
rem 1.3.11 (see Exercise 3.3.6 below), the map

Ko (zl(~~)[ti, tT1,  . . . , Gz,  t,ë])  +Ko (@ë&,  tlí,  . . . , tn, t,ë])
rz

(by iterated use of Corollary 3.2.13)

is injective,  hence all negative K-groups of R/I vanish. Hence
K_,(I) = 0 for all n 2 1.

(b) Suppose G is a cyclic group of prime order p, say with generator
t, and R = ZG is its integral group ring, which may be identified
with Z[t]/(tp - 1). If 5 = e2KilP, a primitive pth root of unity, and
if S = Z[[], then S is the ring of integers in the cyclotomic field
Q(E), hence is a Dedekind domain by Theorem 1.4.18. There is a
surjective homomorphism R ++ S defined by sending t - <. We
have seen that the kernel I of the map R + S is, as a ring without
unit, the same as in the last example if we specialize to the case
m = p. Thus from the calculation in (a) above, K_,(I) = 0 for all
n > 1. From the exact sequence

Ko(R) -+ Ko(S) + K-l(I)  = 0,

we conclude that the map Ko(R) -+ Ko(S)  is surjective. On the
other hand, by Corollary 2.5.9, the ma? Ko(R) --+ Ko(S)  is in-
jective, so we conclude that Ko(ZG)  E Ko(Z[<]).  Thus the ìWall
obstruction groupî for G is trivial if and only if the cyclotomic field
Q(t) has class number 1. It is known that his happens if and only
if p 5 19 [Washington, Ch. 111. From the fact that S is a Dedekind
domain, hence a regular ring, and from the exact sequence

0 = K_,(I) + K_,(R) --t K_,(S) = 0,

K_,(ZG)  = 0 for n > 0.
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It is perhaps worth mentioning a geometric application of negative K-
theory. This involves the concept, which has been increasingly important
in geometric topology during the last several years, of topology with
control. For simplicity, we consider one of the simplest illustrations of
this idea, as developed in [Pedersen]. Namely, we consider h-cobordisms
W between two manifolds M and Mí as in Theorem 2.4.4, but this time
with a control map p : W -+ Iw k. The control map p is required to be
proper, and its restriction to either M or Mí is required to be surjective.
Of course, none of the manifolds W, M, or Mí will be compact. We use
the map p to measure ìdistances,î that is, we define

ìdistî (2, y) = Ip(s)  - p(y)l.

Then we require that W have bounded fundamental group, i.e., that
there be a fixed constant C such that for every x, y E W, and for every
homotopy class of paths from x to y, there be a representative for the
class of length < Ip(x)  - p(y) I+ C, and similarly that null-homotopic loops
be contractible within a set of diameter < C+ the diameter of the loop.
The result of [Pedersen] then gives a necessary and sufficient condition
for a ìboundedî h-cobordism W to have a bounded product structure, in
t_erms of an invariant in I?;-k+1(%l(W)),  provided that dim W > 5. (Here
K_k+l  refers to Wh if k = 0 and to K-k+1 if k > 1.) If k = 0, this reduces
to the usual s-cobordism theorem (Theorem 2.4.4).

Of course, one way a bounded h-cobordism can arise is from a compact
h-cobordism Wí with fundamental group 7r x Zíì.  The projection of the
fundamental group onto Z” induces a map pí : W’ + Tk, and taking
coverings, we get a map

p&@&-W-@%@.

Theorem 1.7 of [Pedersen] identifies the associated invariant as the image
of the original Whitehead torsion in Wh(r  x Zk). But there are controlled
non-compact problems that do not arise so simply from compact situations.

3.3.6. Exercise.

(1) Fill in the details of the argument copied from Theorem 1.3.11,
that if S is a ring and if J is an ideal of R contained in rad R, then
the map Ko(S) -+ Ko(S/ J) induced by the quotient map S + S/J
is injective.

(2) Let R be a local ring, not necessarily commutative, and let I =
rad R. Assume I” = 0 for some k. Let

S = R[tl, t;l, . . . , t,, t,ë], J = I[tl, t;ë,  . . . , t,, t,ë].

Show that S/J is left regular and deduce that NK,(S/ J) = 0 for
all n 5 1 and that K-,(,9/J) = 0 for all n > 0.

(3) Conclude from (1) that the map Ko(S) + Ko(S/J) is injective.
Deduce that NK_,(R) = 0 for n 2 0 and that K_,(R) = 0 for
n > 0.
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3.3.7. Exercise. Use the results of the last exercise to show that for a
finite product of local rings all of whose radicals are nilpotent, all negative
K-groups must vanish. Apply this to the ring Z/(m) to complete the
calculation of the negative K-groups of (m) C Z for an arbitary positive
integer m.

3.3.8. Exercise [KaroubiAlgOp].  Let R be a complex Banach algebra
(with unit), and observe that C(S1,  R) is also a Banach algebra with point-
wise multiplication of functions and with norm

We have an isometric inclusion R q C(S1, R) as constant functions.

(1) For all t E S1, the evaluation map at t induces a retraction

C(Sí,  R) --+ R.

Show that the induced map on KO is independent of t, hence that
Ko(R)  sits as a direct summand in Ko(C(Sí,  R)) in a canonical
way. (Use Corollary 1.6.11.) Define

K?:(R) = ker (Ko(C(S1, R)) + Ko(R))  .

(2) There is a map R[t, t-ë1 w C(S, R) obtained by viewing a Lau-
rent polynomial as a function oft E S1 (identified with the unit cir-
cle in the complex plane). This induces a map K-1 (R) -+ KY:(R).

Now if R is a Banach algebra, so is M,(R) for all n, so GL(n, R)
= (M,(R))X  is an open subset of M,(R) by Lemma 1.6.6. It there-
fore has a natural topology making it a locally contractible topolog-
ical group. Let GL(n, R)O denote the connected component of the
identity in GL(n, R). This contains E(n, R) since each elementary
matrix eij (a) is path-connected to the identity via the path eij (ta),
0 < t 5 1. Let GL(R)O = l&GL(n,  R)O.  Then this is a normal

subgroup of GL(R) and the quotient is abelian  since GL(R)’ 2
E(R). It is customary to define Kfîp(R)  = GL(R)/GL(R)ë.

Show (see [Blackadar], Theorem 8.2.2) that there is a functorial
isomorphism 8 : KY(R) 3 KFF (R). This is constructed as
follows.

(a) If u E GL(n, R), then u @ 11-l E E(2n, R) c GL(2n, R)O
(Corollary 2.1.3). Choose z E C ([0, 27r],  GL(2n, R)O) with
z(O)  = 12n, z(27r) = u @ u- l. Then let an idempotent p E
C(S1,  Mz,(R)) = Mzn (C(S1, R)) be defined by p(eit)  =
z(t)(ln @ O,&(t)-ë. (This is indeed a continuous function
of eit, not just a function of t, since z(0)  and z(27r) both
commute with 1, $ O,.) Define

w4 = [PI - [(ln @ On)].
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Since p(l) = (1, @ 0,),

O([u])  E ker (Kc (C(Sí,  R)) - KO (I?)) = K?ë?(R).

(b)

First show that this is independent of all choices and gives a
homomorphism with respect to the block sum operations @
on KY and on KzF.
Next, to prove injectivity  of 0, suppose 0( [u]) = 0. Stabilizing
u if necessary, reduce to the case where p is conjugate to
1, @ 0, in GL(2n), say

h(eit)p(t)h(eit)-l  =  k( >0
n

for some h E C (9, GL(2n,  R)). Then show h(eiî)z(t)  =

21 (t>
0

Bz:t))  for some ~1, 22 E C([O,  27r],  GL(n, R)) and

deduce that u E GL(n, R)O, so that [u] = 0 in KioP(R).
Finally, to prove surjectivity  of 0, show that every element of
K?j’ may be represented in the form [p] - [(ln @ O,)].

Let A = e(s, s-l ), the commutative Banach algebra of absolutely
convergent Laurent series (with norm coming from Cí(Z)). There
is a norm-decreasing homomorphism A + C(S1)  with dense im-
age obtained by viewing a Laurent series as a function of u E S1
(identified with the unit circle in the complex plane). Show that
K?:(A) % kî(S1  x Sí)  g Z and that the map K-1 (A) + K!?(A)
is surjective.
Let R be a complex C*-algebra, that is, a norm-closed subalgebra
of the bounded operators L3(ëH)  on some complex Hilbert space 3-1
which is invariant under the involution * sending an operator to
its adjoint.  Then if b E RX, b*b E RX and is strictly positive, so
lb1 = (b*b)f  E RX ( a.r gue as in Lemma 1.6.6) and we have a polar
decomposition b = lbju in R with u unitary. In particular, u and
u-l each have norm 1.

Now if R is a C*-algebra, so is M,(R)  for each n. (If R acts
on a Hilbert space Xí, M,(R)  acts on Cm @ E.) Show that if b E
GL(n, R), there is a path joining lb1 to the identity in GL(n, R),
and hence the class of b in KFP(R)  may be represented by the
unitary u = IbJ-lb.  Then show that with A as above, s H u defines
a continuous (in fact norm-decreasing) homomorphism cp : A +
M,(R) sending [s], which generates KY(A), to [b] E K?(R).
From (2) and (3) ba ove, from commutativity of the diagram

K-i(A)  - K?;(A)  + KEîP(A)

ëp*
1

rp.
1

ëp*
1

K-l(R)  - K?:(R) + K ? ( R ) ,
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and from the fact that cp can be chosen to have any desired class
in KfoP(R)  in its image, deduce that the map K-i(R) + K?:(R)
is surjective.

(6) If X is a compact Hausdorff space, the algebra R = Cc(X) is a C*-
algebra. (It may be represented, for instance, on a Hilbert space
of the form L2(X, ,u), with ,U a measure on X of full support.)
Deduce that K-i(R)  ++ KU-l(X).  This provides many examples
of commutative rings with complicated K-1.

3.3.9. Exercise. (Cf. Exercise 3.2.27.)

(1) Show from Theorem 3.3.2 that if rr is any group, then

(2) Deduce that the Wall obstruction group Ke vanishes for free abeli-
an groups but is non-zero for 7r x Z if K-1 (Zn)  # 0. (An example
of a finite abelian  group with this property is given in the next
Exercise.)

3.3.10. Exercise. Let G and H be finite cyclic groups of orders 2 and
3, respectively, so that G x H is cyclic of order 6. Note that Z(G x H) =
ZG @Z ZH. Prom the exact sequences

where w = w, deduce the exact sequences

o-*ZG~~~%-~Z(GXH)~ZG~Z~[~]~~,

0+6Z+ZG@z3iZ%332+0,

o --+ 22 @Z Z[w] + %G @z Z[w] S z[w] + 0.

Note also that there is an exact sequence

0 + 22 @z Z[w] + Z[w] + IF4 + 0.

Compute from these and from the fact that Z[w]  is a PID that K_1(Z(G  x
H)) = K_i(6Z) is infinite cyclic and that K_,(Z(G x H)) = 0 for n 2 2.

The groups K_n(Z~) have been computed for arbitrary finite groups
n by Carter [Carter], and it turns out that K_,(Zr) is always finitely
generated for n = 1 and vanishes for n 2 2. Furthermore, torsion can
occur in K-1,  but it is always of exponent 2.
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Milnor ës  PC2

1. Universal central extensions and H2
For the reader who might have been alarmed by the category-theoretic
approach of the last chapter, this chapter, which discusses Milnorís Kz
functor, will seem a comforting retreat to more familiar territory. However,
we will need to refer to the homology of a group, at least in order to speak
of Hz. Since group homology will be needed in a more serious way in
the next chapter anyway, we provide a brief introduction to the subject
later in this section. The reader who wants a more serious approach to
t,he homology theory of groups and its applications should consult a source
such as [Brown] or [CartanEilenberg].

First, though, we begin with the theory of universal central extensions,
as developed in [Kervaire2]  and [Milnor, 551. This a cute and fairly self-
contained topic in group theory, but itís hard to see at first what it has
to do with K-theory. Roughly speaking, the idea here is that K-theory
for rings is supposed to measure ìabelianî invariants of the highly non-
commutative group GL(R).  For example, K1 (R) is defined by taking
the abelianization of GL(R), in other words, the quotient of this group
by its commutator subgroup E(R). Since E(R) is its own commutator
subgroup (Proposition 2.1.4), repeating this process with E(R) doesnít
yield anything. However, the deep structure of linear algebra over R
should be connected with the deep structure of the group E(R), in other
words the relations satisfied by its generators eij(a).  One way of measur-
ing these is by looking at extensions of E(R) by abelian  groups. There
turns out to be a universal such extension St(R), and the (abelian) ker-
nel of the map St(R) ++  E(R) is Milnorís Kz(R). Even when R is a
field, this turns out to be an interesting invariant with lots of number-
theoretic significance. But since the number-theoretic applications of K2
are described quite nicely in [Milnor], we have only touched on the most
important of these and have chosen to emphasize some other applications
instead.
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Universal Central Extensions.

4.1.1. Definition. Let G be any group, and let A be an abelian  group.
A central extension of G by A is a pair (E, cp), where E is a group
containing A as a central subgroup, and cp : E --H G is a surjective  ho-
momorphism whose kernel is exactly A. Alternatively, in the language of
exact sequences, a central extension of G by A is a short exact sequence

with A central in E.

Remark. There are still those who call the above a central extension of
A by G, but the terminology above is more in keeping with the formalism
of group cohomology, since it turns out that the central extensions of G
by A are classified by H2(G,  A) ( and everyone agrees that here one should
put the G before the A!).

4.1.2. Definition. Next we note that central extensions of G (by ar-
bitrary abelian  groups) form a category. If (E, p) and (Eí, cpí)  are cen-
tral extensions of (the same group) G, a morphism of central extensions
(E, ëp)  + (Eí, cpí)  is a commutative diagram

A central extension (E, cp)  of G by A is called trivial if it is isomorphic in
the category of central extensions of G to G x A 3 G, where pl is projec-
tion on the first factor. A central extension (E, ëp)  of G is called universal
if, for any other central extension (Eí, cpí)  of G, there is a unique morphism
(E, p) -+ (Eí, cpí).  Not every group has a universal central extension, but
if it has one, then it is clear from the definition that any two universal cen-
tral extensions must be isomorphic (in the category of central extensions
of G).

4.1.3. Theorem. A group G has a universal central extension if and
only if it is perfect, that is, G = [G, G]. When this is the case, a central
extension (E, cp) of G is universal if and only if the following two conditions
hold:

(i) E is perfect, that is, E = [E, E], and
(ii) all central extensions of E are trivial.

(Roughly speaking, condition (i) says that E is not too big, and condition
(ii) says that it is not too small.)
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If G is perfect and
14R+F+G+l

is a presentation of G (i.e., a short exact sequence with F a free group),
then the universal central extension (E, ëp)  may be constructed as E =
[F, F]/[F, R], with ëp  the quotient map

[F, F]/[F,  R] + [F, F]/R = [F/R, F/R] = [G, G] = G.

Proof. If G is not perfect, it means it has a non-trivial abelian  quotient,
say A. Let 11, : G --+ A be the quotient map. Now if (E, cp)  is a central
extension of G, we can construct two distinct morphisms from (E, cp) to
the trivial extension G x A 3 G, namely (cp, 1) and (cp, $J o cp) (here
1 : E + A is the trivial map sending everything in E to the identity of
A). This shows that (E, ëp)  cannot be universal. Hence, for G to have a
universal central extension, G must be perfect.

Now assume G is perfect with presentation

l+R--+F+G-il.

We will show first that any central extension of G satisfying (i) and (ii) is
universal. Then to complete the proof, we will show that

[F, FIIP, RI --H IF, FIIR = G
is a central extension satisfying (i) and (ii). This will show in particular that
every perfect group has a universal central extension, and since universal
central extensions are unique and non-perfect groups do not have universal
central extensions, every universal central extension must satisfy (i) and
(ii).

So assume (E, cp) is a central extension of the perfect group G satisfying
(i) and (ii), and let (Eí, cpí) be any other central extension of G. Suppose
r,!~, $J’ : (E, ëp)  --+ (Eí, cpí)  are two morphisms of central extensions. For
z E E, (p’ o @(cc) = cp(z)  = (p’ o $ë(z),  hence @(xc)  = c~v+!Jí(z)  for some
element c, of the kernel Aí of ëp’ : E + G. Similarly, if y E E, then
+(y) = c,+ë(y) for some cr, E Aí. So

1ct ([xc,  Yl) = M(z), ti(Y)l = kzTe4, @Jí(Y)1  = wí(~)~1clí(Y)l  = @’ (k? Yl) .

(In this calculation we have used the fact that Aí is central in Eí.) Hence
$ and $’ coincide on commutators. Since E = [E, E] by (i), $J and $’
coincide on all of E. This shows there can be at most one morphism from
E to E í .

We still need to construct a morphism from E to Eí. Let E” = E XG Eí,
that is,

E” = {(z, y) E E x E’ : cp(z)  = ví(y)}.

Since cp and ëp’ are surjective, projection pi on the first factor is a surjective
homomorphism E” -H E. The kernel of pl is obviously isomorphic to the
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kernel Aí of cpí,  and so is central. So pl : E” + E is a central extension
of E. By (ii), this central extension is trivial, which says that there is a
homomorphism E -+ Eí commuting with the projections onto G. This
means there is a morphism of central extensions from E to Eí. Since E’
was arbitrary and we already showed that morphisms from E to E’ are
unique, thus E is a universal central extension of G.

Finally, let E = [F, F]/[F, R], with cp the quotient map

[F, F]/[F, R] + [F, F]/R  = [F/R, F/R] = [G, G] = G.

To begin with, note that E C El = F/[F,  R], which also projects onto G
via the quotient map (pi : F/[F,  R] + F/R = G, and cp is the restriction
of cpi to E. (Since R d F, [F, R] C R, and [F, R] is also normal in F.)
Note that the kernel of (pi is contained in R/[F,  R], hence commutators
of elements of the kernel with elements of El lie in [F, R]/[F,  R], which
is trivial. Thus the kernel of (~1 is central in El and (E, cp), (El, cpl) are
central extensions of G. We need to verify properties (i) and (ii) for E.

Directly from the definition of E and El, we see that El has E as
its commutator subgroup. On the other hand, since ëp  and (~1 are both
surjective  onto G, El is generated by E together with the kernel of (~1,
which is central. So

E = [El, El] = [E . Z(E&  E . Z(El)] = [E, E]

and E is perfect. (Here, as usual, Z(El)  denotes the center of El; the letter
2 comes from the German Zentrum.)  This proves (i).

As far as (ii) is concerned, let

be any central extension of E. This induces an extension Es = El x GEM  3
El of El, where

El XG  E2 = {(G I/> E J% x -J-32  : cpl(~c>  = ëPO$~/)).

This is actually a central extension. Indeed, the kernel of pl : Es -+ El is
clearly isomorphic to the kernel of ëp  o $J : E2 -+ G. But since E = [E, E],
$([Ez,  Ed = [$J(Ez),  $(&)I = [E, El = E, and  thus & = [Ez,  -&I. A.
Also, 11, ([Ez,  ker cp o $1)  C [E, ker ëp]  = 1, so [E2,  kercp  o $1 C A. Thus for
x E ker ëp  o II, and s, t E E2, xsx-1  = s.q and xtx-’ = tz2 for some central
z1 and ~2, and x[s, t]z-’  = [xsxF1, xtx-ë]  = [sq, tz2] = [s, t]. Thus  x
commutes with [Ez,  E2]. Since x also commutes with A (A is central), it
commutes with all of Ez, and Es is a central extension of El.

Since F is free, we can fill in the diagram

F

-L

E3 = El XGE~ 4 El
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to get a homomorphism F + E3 lifting the quotient map F + El. This
amounts to a homomorphism 0 : F + EZ such that for IC E F, cp o $ (0 (z))
coincides with the image of x in G Z F/R. So t)(R)  G ker cp o + C Z(Ez),
and

~([F, RI)  C P(F),  e(R)1 C F2, z(E2)l = 1.

Hence 9 descends to a map 6 : F/[F, R] = El -+ E2 which, together with
the identity map on El, gives a splitting El ---t Es = El xc Es of pi.
Restricting to E then gives a trivialization of Y/J : E2 + E, verifying (ii).
Thus we have constructed a universal central extension of G. Cl

4.1.4. Remark. Of the conditions in Theorem 4.1.3 for checking when
one has a universal central extension, (i) is fairly straightforward, but (ii)
is rather difficult to check (without using machinery from group homology
theory, which will make it possible to restate the condition in the form
Hs(E, Z) = 0). However, the proof of Theorem 4.1.3 gives the following
additional piece of information which is sometimes useful. Suppose G is a
perfect group and (Eí, cpí)  is a central extension of G satisfying (i). Then
if (E, ëp)  denotes the universal central extension of G, there is a unique
morphism $J of central extensions from E to Eí,  and $J must map E onto E’
and the abelian  group ker cp onto the abelian  group ker cpí.  Thus condition
(i) (without condition (ii)) at least guarantees that one has a quotient of
the universal central extension.

To see this, note that since Eí = [Eí, Eí], to prove surjectivity  of $J, itís
enough to show that every commutator is in the image. Let xí, y’ E Eí.

Then we can choose CC, y E E such that p(x) = (pí(zí),  p(y) = cpí(yí),  and
it follows from the relation cp = ëp’  o T,!J  that xí = $(x)zi, yí = $(y)z2 for
some ~1, zz E ker ëpí.  Since zi and ~2 are central,

1xí,  Yíl = M(X)%, ti(Y>Zzl = [@(x)7  ti(Y)l  = + ([xc, Yl),

and thus + is surjective. Furthermore, if Z’ E kercp’ and $(z) = zí,  then
cp’ o $(z) = 1, hence p(z) = 1, which shows that $-ë(ker  cpí)  C ker cp. The
other inclusion is trivial. êI

4.1.5. Examples. Let G and G be connected Hausdorff topological
groups and p : 6 + G a continuous surjective homomorphism with dis-
crete kernel D c G. Since D is normal in G, for each d E D, we have a
continuous map g t--+ gdg-1  from G to D. Since G is connected and D is
discrete, this map must be constant, and thus gdg-1 = d for all d E D,
g E 6í,  i.e., D is central. So G is a central extension of G. If G is also
perfect, which is easy to check in many examples, then it is a quotient of
the universal central extension.

In particular, letís take 6’ = SU(2), the group of matrices ff P
( >-p B

with a, p E C, IcyI + IpI2 = 1. G will be SO(3), the group of rotations
(orthogonal linear transformations of determinant 1) of Euclidean 3-space.
G and G are clearly connected and Hausdorff;  in fact G is clearly home-
omorphic to the unit sphere in C2, or to S3, which is simply connected.
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The Lie algebra of G is defined to be the S-dimensional real vector space

fi = {x E Mz(C)  : xt = -x, Trx = o}

K

iX= y + iz
-y+iz -ix >

: x, y, z E IR .I
We can make this into a Euclidean space via the inner product

(X, Y) = -Tr(XY),

since this pairing is clearly symmetric and bilinear, and itís positive-definite
since for X E i,

(X, X) = -Tr(XX) = Tr (x . (Xî))  2 0,

with equality only if X = 0. Note that G acts on i by conjugation, since
ifgEGandXE&

(gXg& = (gXg-ëy  = (ijy(Xt)(gt)  = g . (-X) . g-1 = -(gXg_l).

Furthermore, G preserves the inner product on 6 since

(gXg-1,  gyg-l)  = - Tr(gXg-lgyg-1)  = - Tr(gXYg_1)

= -Tr(XY)  = (X, Y).

So we obtain a homomorphism p from G to the connected component of
the identity in the orthogonal group of 3, in other words, if we identify
fi with lK3,  to G. This homomorphism is easily seen to be surjective.  Its
kernel D consists of matrices g which commute with everything in 5, and
thus with everything in

and thus with all of Mz(C). (Any matrix differs by a scalar multiple of the
identity from a traceless  matrix.) So

D = G n {scalar matrices in Mz(C)}  = {(; ;), (_d _q)),,i2>

and thus G is a central extension of SO(3) by Z/2. However, G is perfect,
since the Implicit Function Theorem shows that the image of the commu-
tator map G x G + G, (g, h) I-+  ghg- ëhe’  , contains an open neighborhood
of the identity, and thus generates G. So G is a quotient of the universal
central extension of G.

There are many other ìnaturally occurringî pairs (G, G) giving quo-
tients of the universal central extensions of matrix groups. For instance
(this example will be important later), let G = SL(n,  R) = E(n, R), which



168 4. Milnorís K2

is a perfect connected matrix group for any n > 2. Then because of polar
decomposition, G = SO(n) . expsn, where 5, is the vector space of n x n
symmetric matrices with trace zero, and so G has the rotation group SO(n)
as a deformation retract. In particular,

Z for n = 2
ri(G) 2 xl(SO(n))  g Z,2 for n > 3

Thus for n 2 3, the universal covering group G of G is a non-trivial double
cover, and is again perfect (since the commutator subgroup contains an
open neighborhood of the identity, and thus is all of G). Incidentally, one
can show that the topological group G cannot itself be realized as a group
of real or complex matrices. Thus the universal central extension of SL(W)
is non-trivial, and the kernel of this universal central extension has Z/2 as
a quotient group. Later we will come back to this from the point of view
of J&(W).

Homology of Groups. Next we give a quick introduction to the ho-
mology of groups, which is an essential tool both for translating the theory
of universal central extensions into something computable and for defining
and understanding the higher K-groups which will appear in Chapter 5.

4.1.6. Definition. Let G be any group. A (left) G-module A4 is an
abelian group equipped with a (left) action of G by automorphisms, satis-
fying the usual conditions g. (he m) = (gh) . m, 1 . m = m for g, h E G,
m E M, or equivalently, a left R-module, where R = ZG is the group ring of
G. Note that any such M may also be made into a right G-module if we
define m : g =+f g-l .m, though there is one source of possible confusion: if
G is abelian,  then R is a commutative ring, and we customarily make any
left module for such a ring into a right module by defining m . I- =,+f r . m,
and this convention disagrees with the previous one. When it makes a dif-
ference, we will specify which right action we are using. We will denote by
Z the trivial G-module which is Z as an abelian  group and with g . n = n
for all g E G, n E Z. (In this case, when G is abelian,  the two right actions
agree.)

4.1.7. Definition. Let G be any group, M a G-module. We define the
homology and cohomology groups of G with coefficients in M as
follows. First note that we can construct a free resolution of the trivial G-
module Z by letting Pj = ZGj+ë, the free abelian  group on the (j + 1)-st
Cartesian product of G with itself, for j 2 0, and defining boundary maps
dj : Pj + Pj-1, j 2 1, by

k=O

where <& indicates that g& is omitted. The augmentation E : PO -+ z is
defined by g I--+  1, and it is a trivial calculation to check that
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. . .2+ pj = z@+l A+ pj_l = ZGj _!!.d+ . . . dîPo=ZGI,Z+O
(4.1.8)

is exact. Furthermore, the boundary maps dj me clearly both left and right
G-module maps for the diagonal actions

($70,  91, . . ., Sj) ’ 9 = (909,  9199  * f * Y !7ji7>.

(Note that the right action used here is the same as the left action if
G is abelian,  and is in general not the same as the ìflipped left action”
m-g = g-1.  m.)

The homology groups of G with coefficients in A4 are the homology
groups of the complex

C.(G, M) = P. '&G M 2 ZZ’  @z M,

and the cohomology groups of G with coefficients in M are the
homology groups of the dual complex

cí(G,  M) = HomzG(P.,  M) g HomzWí,  M)a

(Here we are always using the left module structure on M. TO identify
Pj @ZG M with ZGj @Z  M, we view Pj as the free right ZG-module OP gen-
erators (1, gr, . . . , gj). To identify HomzG(Pj,  M) with Homz(ZGJ,  M),
we let F E HomzG(Pj,  M) correspond to f E Homz(ZGj,  M), where

fk.71,  -**> gj> =F(l,  91, glg2, ***T glg2..*Sn),
F(go, . . . > Sj)  = 90 ’ f(L7cj-1fJ1,  9T192, . . . T ST2iSj) -1

The lowest-dimensional parts of these complexes are of particular inter-
est, so we write them out explicitly:
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C.(G,  M) : . . . i?+ ZG2 gz M ++ ZG ,& M dl:g@mHgím-m,  M,

& ((91,  . *. , h) @ m) = (92&l, . . . , 57dT1) ~8 91 . m

+ &qgl,  . . .) 6.. .) 4 @m,

j=l

C.cG, Mj : M dO:dOm(g)=g~m--m
F HomZ(ZG,  M)

2 Homz(ZG2,  M) z . . . ,

dîf  (go, . . ., Sn> = 90 . fbl, . . . , gn)

+ &~~f(~o, . . ..gj-1gj...., gn)
j=l

+ (-l)ì+ëf(go,  . . . , a-1).

Note that when the G-action on M is trivial, dl = 0 and do E 0, so
Ho(G, M) = Hí(G, M) = M. Also in this case, we have

& ((91, 92) @ m) = (g2gF1  - g2 + gr) @ m,

so Hr(G, M) = ZG 63~ M/ im d2 = G,b @Z M, while H1 (G, M) is simply
Hom(G, M).

More generally, when the action of G on M can be arbitrary, we see
that He(G, M) = MG, the quotient of M by the submodule generated by
the elements g. m - m, g E G, m E M. Similarly, Hí(G,  M) = MG, the
elements of M left fixed by all elements of G. The 1-cocycles f E Z1 (G, M)
are functions f : G -+ M such that 90 . f(a)  - f(gm)  + f(d = 0
for all go, gr E G, or such that f(gsgr)  = f(ge) + go . f(gr).  The l-
coboundaries are those of the special sort f(g) = g.m-m for some m E M;
H1 (G, M) is the quotient of Zí(G,  M) by this subgroup. Similarly, 2-
cocycles f E Z2(G, M) are functions f : G x G + M such that go .
fh, s4 - fkwl, 92) + fko, cm)  - fh 91) = 0 for a~1 go,gl,  a E G.

While we will not develop that much of the homology theory of groups,
we present at least a few tools for computing homology and cohomology
and develop the relationship between Hz and H2 and the theory of central
extensions. The first basic facts are contained in the following proposition.

4.1.9. Proposition. Let G be a group. For each k 2 0, M u) Hk(G, M)
and M -+P Hk(G,  M) are (covariant) functors on the category of G-modules.
If M is a projective G-module, then Hk (G, M) = 0 for all k > 0. Similarly,
if M is an injective  G-module, then Hî(G,  M) = 0 for all lc > 0. If

0 + MI % M2 -% M3 + 0

is a short exact sequence of G modules, there are associated long exact
sequences

. . . 5 fb+l(G,  M3) -% Hk(G,  Ml) a -&(G, M2)

k Hk(G, M3) 3 Hk_l(G,  MI) -% . . .
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and

. . . -% Hk-l(G,  MS) -% Hk(G, Ml) = Hî(G,  Mz)

-% Hî(G,  M3) -fz, Hkl(G,  Ml) =. . . .

Proof. It is obvious from the definition that homology and cohomology
are functorial. If M is a free ZG-module, with a free basis indexed by a
set I, then for any right ZG-module N, N @zG  M is naturally isomorphic
to Ní,  and so tensoring with M preserves exactness. A similar argument
applies if M is a direct summand in a free module. Thus, if M is projective,
since the complex P. is exact, so is P. @zG M, and so Hk (G, M) = 0 for all
k > 0. Similarly, if M is injective, then HomzG(., M) preserves exactness
and so HomzG(P,,  M) is exact, so that Hk(G, M) = 0 for all k > 0. The
statement about long exact sequences follows immediately from Theorem
1.7.6 (the Fundamental Theorem of Homological Algebra), since a short
exact sequence of G-modules yields short exact sequences

and

0 + HOmZG(P.,  Mr) a Homzc(P.,  Mz) L Homzc(P.7  M3) + 0

of chain complexes. 0

4.1.10. Corollary. If G is a group and M is a G-module, then homology
of M can be computed from a projective resolution of M, while cohomology
can be computed from an injective resolution. More precisely, if

is exact and each Nj is G-projective, then H.(G, M) is the homology of
the complex z @zG N.. Similarly, if

is exact and each Nj is G-injective, then Hí(G, M) is the homology of the
complex N.” .

Proof. This follows by iteration, splitting the resolution into a series
of short exact sequences and using Proposition 4.1.9 over and over again.
For instance, consider the case of a projective resolution N. of M. First
consider the short exact sequence

0 -+ Ni/(im&) 5 No + M -+O.
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From this we obtain a long exact sequence of homology groups, but since
Nc is projective, Hk(G, No) = 0 for k > 0. Thus

Hk(G, M) g Hk-r(G,  Nr/(im&))

for k > 2, and similarly there is an exact sequence

0 --f H1(G,  M) -, Ho(G, Nl/(im&))

ti Ho(G, No) --t Ho(G,  M) + 0.

On the other hand, we have an exact sequence

(4.1.11) 0 + N2/(imds) 3 Nr --+ Nr/(im&) --+ 0,

and Nr is projective. Repeating the argument,

Hk(G,  M) g &--l(G,  Nl/(im&)) g Hk-2(G,  N2/(imd3))

for k 2 3, and we obtain an exact sequence

0 -+ H2(G, M) g Hr(G, Nr/(im&))  + Ho(G,  WGm&))

= Ho(G,  Nr) + Ho(G,  Nr/(im&))  + 0.

Putting this together with (4.1.11), we see that HI(G,  M) and Ho(G,  M)
are the lowest-degree homology groups of the complex Ho(G, IV.) g Z@ZG
IV.. Then we continue inductively to compute H2(G,  M), and so on. 0

For future applications, the following easy consequence of Corollary
4.1.10 is often useful.

4.1.12. Corollary (ìShapiroís Lemmaî) . Let G be a group and let
H c G be a subgroup of G. Let M be an H-module. Then there are
natural isomorphisms

Hj(G, ZG 63í~~  M) 2 Hj(H, M)

for all j.

Proof. Choose a ZH-projective resolution N. of M. By Corollary 4.1.10,
H.(H,  M) is the homology of the complex Z I&H N.. However, if gi is a
set of representatives for the right H-cosets in G, then ZG is a free right
ZH-module with basis gi, so ZG @ZH N. = Bi gi @ N. is a ZG-projective
resolution of ZG @.ZH  M. Thus H.(G,  ZG C?QH M) is the homology of the
complex

Z&,GZG@ZHJJ.~Z@ZHN.,

which proves the result. 0

For purposes of studying central extensions, we will be particularly in-
terested in homology and cohomology of G-modules with trivial G-action.
These are related by the following.



1. Universal central extensions and Hz 173

4.1.13. Theorem (ìUniversal Coefficient Theoremî). Let G be a
group and let M be an abelian group, viewed as a G-module with trivial
G-action. Then there are short exact sequences

0 + Ext; (l&-r  (G, Z), M) -+ Hî(G,  M) -+ Homz  (HI, (G, Z), M) + 0

for all k, which split (though not in a natural way). In particular,

Hz (G, M) = 0 for all G-modules M with trivial G-action

if and only if the abelianization  of G is free (abelian) and HZ (G, Z) = 0.

Proof. Recall that H. = H. (G, Z) was defined to be the homology
of P. ~IZG Z. However, since P. is a G-projective resolution of Z, by
Corollary 4.1.10 we can also compute it as the homology of the complex
C. = Z @zG P. z ZGí.  On the other hand, Hí(G,  M) is the homology
of Homzc(P,, M) E HomZ(ZGí,  M) Z Homz(C.,  M) with the dual dif-

ferential. Let Zk = ker(Ck 3 Ck-1) and Bk-_l  = im(Ck  5 C&r),  so
that Hk(G,  Z) = Zk/Bk.  Note that Ck iS a free abelian  group; hence its

subgroups Zk and Bk are also free. We have short exact  sequences

0 --i Z, --i Cr, 3 Bk-r -+ 0

and
0 -+ Bk --) Z, --)  HI, + 0.

Since Bk_-l  is free abelian,  the first of these splits, and SO goes under the
functor HomZ(., M) to a (split) short exact sequence

0 + Homz(Bk_r,  M)
d;-,
- Homz(Ck,  M) -+ Homz(Zk,  M) + 0.

(4.1.14)

Exactness of the second is not preserved in general, but from the definition
of Ext there is an exact sequence

0 -+ Homz(Bk,  M) + Homz(Zk,  M)

+ Homz(Bk,  M) 4 Exti(Hk,  M) -+ 0.

(4.1.15)

Now note that (4.1.14) may be viewed as giving a short exact sequence of
chain complexes

0 + Homz(B._r,  M) + Homz(C.,  M) + Homz(Z.,  M) --+ 0,

where the outside chain complexes have vanishing differentials. So from
the Fundamental Theorem of Homological Algebra, we obtain a long exact
homology sequence

. . . --+Homz(Zk-1,  W +Homz(&-1, M)

+ Hî(G,  M) + Homz(Zk,  M) --+ Homz(Bk,  M) -+ *.. .
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Substituting from (4.1.15) we obtain the desired short exact sequence

0 + Ext; (H/+-l (G, Z) , M) + Hî(G,  M) -+ Homz  (Hk (G, Z), M) -+ 0.

The sequence splits since (4.1.14) splits (though not naturally).
To prove the last statement, recall that Hl(G, Z) is the abelianization of

G. Hence Exti  (HI (G, Z) , M) vanishes for all M if and only if HI (G, Z)
is Z-projective, i.e., free abelian.  Similarly, Homz  (Hz (G, Z) , M) vanishes
for all M if and only if Hz (G, Z) vanishes. 0

Now it is time to make the connection between group homology and the
theory of extensions. This follows from the following basic classification
theorem, due originally to Eilenberg and Mac Lane. The theorem has a
version for non-central extension extensions and even a version for exten-
sions by a non-abelian normal subgroup, but in the interests of simplicity
we stick with the simplest case, which is all we will need for applications
to K-theory.

4.1.16. Theorem. Let G be a group and let A be an abelian  group.
Then the isomorphism classes of parameterized  central extensions of G by
A, that is, triples (E, ëp,  L), where (E, ëp)  is a central extension of G and
L : A + E is an isomorphism of A with ker cp, naturally form an abelian
group Ext(G,  A>, in which the trivial extension gives the O-element. This
group is naturally isomorphic to H2(G, A), where we view A as a trivial
G-module. Hence every central extension of G by A is trivial if and only if
H2(G,  A) = 0.

Proof. We should make precise what we mean by isomorphism; two
triples (E, cp, L) and (Eí, cpí,  Lí)  are isomorphic if and only if there is an
isomorphism of central extensions from E to E’ compatible with L and Lí,

i.e., a commutative diagram with exact rows

l-----+AîE&G-1

LI ,
l-A-EíAG-11.

Next, we explain the group structure on Ext(G, A). If (El, (~1,  ~1) and
(E2, (~2,  ~2)  are central extensions of G by A, we define their Baer sum as
follows. First let E = El xG E2, i.e., ((2, y) E El x E2 : cpl(z)  = cps(y)}.
Note that this group comes with a natural surjection  cp : E ++ G given by
cp(z,  y) = cpl(z)  = 92(y). The kernel of cp is central, but itís too big; itís
isomorphic to A x A. Therefore we define

(4.1.17) E3 = E/ ((~1 (u) , -LZ (a)) : a E A}.

Note that cp factors through Es and gives a map ëp3  : E3 --H G. The kernel
of (~3 is central and is given by

{(h(m) 7 L2 (a211 :~l,a2~A}/{(~l(a),-~2(a)):a~A),
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so we can define an isomorphism ~~ : A + ker ëp3  by

L3(U) = [(h (a) 7 L2 (O>>l = [CL1  (0) 7 L2 (a>>1  *

(Here we use the relation that [(LI  (-a),  ~2 (u))] = 0.) We define

[(El, ëpi,  41 + I(E2, (~2, ~211 = ICE37  93, ~3)1$

This addition operation is actually commutative, since if we define (Ed, (~4,
~4) similarly but with El and Es interchanged, then we have a commutative
diagram

1----+A4e,E4&G--+1
with $J defined by the ìflip.î It is easy to verify that the Baer sum is asso-
ciative on isomorphism classes of central extensions, that the isomorphism
class of the trivial extension

(G x A P I, i2),

where pl is projection on the first factor and i2 is injection into the second
factor, acts as an identity with respect to the Baer  sum, and that the class
of (E, cp, L) has as its inverse (E, cp, -L). Thus we obtain an abelian  group
Ext(G, A) of parameterized  central extensions of G by A, in which the
trivial extension gives the O-element.

Now we want to set up an isomorphism between Ext(G, A) and H2(G,
A). First we define a map Q : Ext(G, A) --+ H2(G,  A), then weíll define the
inverse map 9 : H2(G, A) + Ext(G, A). Start  with a class in Ext(G, A)
represented by (E, cp, L). Choose a (set-theoretic) section s : G -+ E, that
is, a map such that cp o s = idG. We may suppose that s(1~) = 1~. For
g, h E G, cp(s(gh))  = cp(s(g))cp(s(h)), so we can define a map f : GxG  + A
by

s(gh) = L 0 f(g> h)s(gb(h).

Since 1~ =  s(lc),  f(g, 1~) =  f(l~, 9) =  0 ad f(s, 9-l) =  f(g-I, 9) for

all g E G. If g, h, k E G, then s(gh)s(k)  = LO f(g, h)s(g)s(h)s(k), while
s(g)s(hk)  = LO f(h, k)s(g)s(h)s(k),  so the associative rule gives

L 0 fh hk)L 0 f(h ~)s(g)s(h)s(k)  = L 0 f(g, hk)s(g)s(hk)  = s(ghk)
= L 0 fkh kb(gh)s(k)  = L 0 f(gh I~)L  0 f(g, h)s(gb(hb(k),

or f(g, hk) + f(h, lc) = f(gh,  k) + f(g, h). (We write products multi-
plicatively in E but additively in A.) Comparison with the formulas in
Definition 4.1.7 shows that this is precisely the condition for f to define a 2-
cocycle in Z2(G, A). So we let @([(E, cp, L)]) = [f] E H2(G, A). Of course,
it is not immediately obviously that this is independent of the choice of s.
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But if sí is some other choice for s, then we must have sí(g) = s(g)L o u(g)
for some map u : G -+ A. Then if f’ is the 2-cocycle defined by s, we have

S(&>L  0 u(gh) = sí(gh)  = L 0 fí(g,  h)sí(g)sí(h)

= L O fík,  h)L O ë1L(S)L  0 ëLl(h)s(g)s(h),

and comparison with the definition of f gives

fb, h) + 4gh) = fíh  h) + 4s) + U(h)>

which says that f’ differs from f by the coboundary of IL. Hence fí and f
define the same cohomology class and @ is well defined.

To show that @ is a homomorphism, note first that @ sends the O-
element of Ext(G, A) to the O-element of H2(G,  A), since when (E, ëp,  L) =
(G x A, pl, i2),  we can take s = ir, which gives f = 0. Next we show
that @ respects the Baer sum. Given (El, (~1, ~1) and (Es, 972,  ~a), choose
corresponding sections sr and ss giving cocycles fl and fi, and let E =
El xG E2 and E3 be as in (4.1.17). Note that s = (sr, sz) gives a section
of (E, ëp)  which descends to a section s3 for Es. Then if g, h E G, we have

s&h) = [(Sl(gh),  s&h))1
= [(sl(s)sl(hL)~l  0 fib h), sdghbz  0 fib, h))l

= sdgbdh)K~lofi(g,  h), ~20 fdg, h))l
= sdgh(h)~3  (fi(g,  h) + fdg, h)) 7

so that the cocycle f3 defined by ss is just fi + fi. This shows that @ is
additive.

To complete the proof, we show that @ is bijective. First suppose
@([(ET  P, ~)l) = 0. This means that if we choose a section f as above,
the corresponding cocycle f is the coboundary of some u : G --+ A, i.e.,

f (g> h) = 4gh)  - u(g) - u(h), g, h E G.

Replacing s by sí, where sí(g) = s(g)(L o u(g))-l,  we have

sí(gh)  = s(gh)(L  o u(gh))-’

= s(g)s(h)l 0 (f (g, h) - u(gh))
= 4gMh)l. (4gh) - u(g) - u(h) - u(gh))
= sí(g)síW,

so sí is a homomorphism, which shows (E, cp, L) is trivial. Thus Cp is injec-
tive.

Now we construct a right inverse 9 for @, showing that Q is surjective.
Let f E Z2(G,  A), which we can take (by changing it within its cohomology
class) to be normalized so that f = 0 on {lo} x G and on G x (1~) (this
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implies f(g, g-l))  = f(g-ë,  g)) and let E = G x A as a set, but with the
following binary operation:

(91, aI>  . (92, a2> = (91 . Q2, a1 + a2 - f(g1, 92)).

Since f is normalized, (lo, 0~) acts as an identity element with respect to
the operation . . Furthermore, we have from the cocycle identity

((91, 4 . (92, a2))  . (93, a3)  = (91 . Q2, a1 + a2 - f(g1, 92)) . (93, a3)

= (91 . Q2 . Q3, a1 + a2 + a3 - f(g1, 92) - f(s1 . Q2, 93))

= (91 * 92 . Q3, a1 + a2 + a3 - fb2, 93) - f(g1, Q2 .93))

= (L71,  al> . (92 . Q3, a2 + a3 - f(g2,  93))

= (91, 4 . ((92, a2) . (93, a3)).

Also,

(9, o) ’ (g-? -a + fk?, 6)) = (1G,  OA),

(g-l, --a + fb, g-ë>> ’ (9, a) = (1G,  OA),

so E is a group with respect to . . Define ëp : E + G to be projection on
the first factor and define L : A + E by L(U)  = (lo, u). Then it is clear
that cp and L are homomorphisms and that L(A) is central in E and equal
to the kernel of cp. Furthermore, s : G + E defined by s(g) = (g, 0) is a
section which gives rise to the cocycle f since

s(gh)  = (gh7 0) = (9, 0) * (4 fkJ> h)) = 4gb(~Mfk7,  h)),

TV) $1 - KEY 97 L)l is a right inverse to a, showing that + is bijec-

4.1.18. Corollary. If G is a perfect group, then a central extension (E, ëp)
of G is universal if and only if Hl(E, Z) = 0 and Hs(E,  Z) = 0.

Proof. This follows immediately from Theorems 4.1.3,4.1.13,  and 4.1.16.
(Note that a group is perfect if and only if its Hi vanishes.) q

In fact, one can go a bit further.

4.1.19. Theorem. Let G be a perfect group. Then the kernel of the
universal central extension (E, ëp)  of G is naturally isomorphic to A =
Hz (G, Z), and under the isomorphisms

Ext(G, A) g H2(G, A) cs Homz  (HZ (G, Z), A)

defined by Theorems 4.1.16  and 4.1.13, the class of (E, ëp)  corresponds
to the identity map Hs(G, Z) -+ A. (The Ext term vanishes since H1
vanishes.)

The proof of this theorem requires developing some of the theory of how
homology and cohomology behave under group extensions. To do this in
the greatest generality requires the theory of spectral sequences and would
take us a bit too far afield in homological algebra. However the following
special case of the theory can be done directly.



178 4. Milnorís  Kz

4.1.20. Theorem (ìInflation-Restriction Sequenceî). Let G be a
group, N a normal subgroup, and A a G-module. Then there is a natural
exact sequence

0 + @(G/N, AN) % H1(G,  A) = H1(N, A)G/N

2 Hí(G/N,  AN) % H2(G,  A).

Here ìres”  comes from restriction of cocycles from G to N and ìinf”  denotes
inflation, composition of cocycles on G/N with the quotient map G -%
G/N. The action of G/N on HI (N, A) is induced from the conjugation
action of G on N and from the action of G on A. If G acts trivially on A
and N is central in G, the exact sequence simplifies to

0 4 Hl(G/N,  A) % Hí(G, A) = H1(N, A)

2 H2(G/N,  A) % Hí(G,  A),

where the map H1(N, A) S Hom(N, A) 5 H2(G/N,  A) sends u : N + A
to the class of uof, where f E Z2(G/N,  A) is a cocycle defining the central
extension of G/N  by N as in Theorem 4.1.16.

Proof. Note that AN is a G/N-module, since if 4 E G/N, a E AN and
q(g) = jr, then jr . a =def g. a will not change if we replace g by gn, n E N.
Ifu:G/N+A N is a 1-cocycle, then u o q : G -+ AN is a 1-cocycle, since
for g, h E G,

u o q(gh) = ëIL(&) = u(b) + 4. u(k) = u o q(g) + g . (u o q(h)).

Furthermore, if uo q is the coboundary of some a E A, then u(ti)  = g. a - a,
hence taking g E N shows that a E AN and u is the coboundary of a. Thus
Hl(G/N,  AN) -% H1(G,  A) is injective.

It is clear that there is a homomorphism H1(G,  A) z H1(N, A). To
show that the image is fixed by G/N, consider a 1-cocycle u : G --) A and
let g E G, ti = q(g), n E N. Then

(9. @ëu))(n)  =def 9. u(g-ëng)  = 9. (u(g-l) + 9-l . u(ng)>

zz g . (-9-I . u(g)) + 9.9-l . u(ng)

= -u(g) + u(ng)  = u(n) + n. u(g) - u(g).

Thus g. (res U) differs from res u by the coboundary of u(g), and so jr fixes
the cohomology class of resu.

That res o inf : H1 (G/N, AN) + H1(N, A) is 0 is trivial. We must show
that if a 1-cocycle u : G -+ A restricts on N to the coboundary of some
a E A, then u is up to a coboundary the inflation of a cocycle on G/N with
values in AN.  Replacing u by u - 6a, we may suppose u vanishes on N.
Then for g E G and n E N, u(gn) = u(g)+g.u(n)  = u(g)+0  = u(g), so u is
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constant on cosets  of N. Furthermore, u takes values in AN, since we then
have (by normality of N) u(g) = u(ng)  = u(n) + 7~. u(g) = 0 + n. u(g) =
n. u(g), so u is the inflation of a cocycle G/N + AN.

We prove the last part of the theorem only in the case where A is a
trivial G-module, which is the only case weíll need for applications. The
general case works the same way but the calculations involved are much
messier. We define the map a : H1(N, A)GIN --+ H2(G/N,  A). Let u :
N --+ A be a 1-cocycle, i.e., a homomorphism, which is invariant under
conjugation by elements of G. (Since A is abelian,  u is automatically fixed
under conjugation by elements of N.) Fix a section s : G/N + G with
S(~GIN)  = 1~. We define $ : G/N x G/N --t A by

q!+j,  k) = U(s(Q-is(g)%(giL)).

The same calculation as in Theorem 4.1.16 shows that 1c, is a 2-cocycle with
values in A, and that its cohomology class doesnít depend on the choice of s.
We define a( [u])  to be the class of +cI; it is obvious that d is a homomorphism
of abelian  groups. Note that in the important special case when N is
central, the condition that u be G-invariant is vacuous, and 1c, is just u of,
where f : G/N x G/N + N is the cocycle determined by s and the central
extension of G/N by N, so in this case d : H1 (N, A) -+ H2(G/N,  A) is just
composition with the class of f. It is also clear in general that II, vanishes
identically if s is a homomorphism. Letís show next that d vanishes on
the image of res. Suppose u : G --)  A is a homomorphism; we denote
its restriction to N by the same letter. Define a map v : G/N -+ A by
v(g) = u(s(g)).  Then

6v(g, A) =&f v(g)  + v(iL)  - ëu(giL)

= 21(Q))  + u(s(iz))  - u(s(&))  = -$J(&  iL),

so q5 is a coboundary and d(res  u) = 0.
In the other direction, if u : N -+ A is a homomorphism fixed under

conjugation by elements of G and a(u) = 0, then $J as defined above is a
coboundary, say of some -v : G/N -+ A. In other words,

U(s(~)-is(g)-ls(g~))  = -v(g) - zl(tL)  + v(&).

We may suppose w(~G/N)  = 0. Let ti(g)  = v(g)  + u(s(g)-ig).  Then
it is clear that ii agrees with u on N and that for g E G and n E N,
ii = ii(g) + u(n). Finally we have

?qgh)  = v(&) + zA(s(giL)-lgh)

= v(g) + v(h)  + U(s(~)-is(g)-is(gq)  + u(s(g&igh)

= w(g) + v(h) + U(s(lL)-ës(g)-lgh)

= G(h)  + v(g)  + U(h-ës(g)-igq

= C(h) + C(g),



180 4. Milnorís K2

since u is invariant under conjugation by h, and thus fi is a homomorphism
extending u and u = res C.

It remains to prove exactness at H2(G/N,  A). First of all, inf od = 0,
for if u : N + A is a homomorphism fixed under conjugation by elements
of G and $J is defined as above, then

inf $(g, h) =&f u(~(iL)-~s(~)-~s(&))

= u(s(h)-ëh)  + u(h-ls(cj)-ls(&))

= u(s(iL)-ëh)  + u(s(cj)-ës(&)h-l)

= u(s(h)-ëh)  + u(s(4)-ë9)  + u(g%(&)h-ë)

= u(s(k)-ëh)  + u(s(9)-lg)  + u(h-1g-1s(9iL))

= bv(9,  h),

where w(g) = u(s(9)-ë9).  Finally, suppose 1c, E Z2(G/N,  A), which we
may suppose is normalized to vanish when one of its arguments is ~GIN,
and inf 1c, is a coboundary, say 6v with v : G --f A. We need to show that
the class of $J is in the image of a. What we are given translates into the
condition

+(9, h) = v(9) + v(h)  - u(9h).

Since the left-hand side vanishes when g or h lies in N, this says in par-
ticular that v restricted to N is a homomorphism, and that v(gn) =
u(n9) = v(9) + u(n) for n E N. Thus the restriction of w defines a class in
H1(N, A) G /N. The class d(v]N) is defined by the cocycle

$Jí(9,  it) = v(s(~)-rs(9)-ës(9i)).

Then

(Ic,  - $Jí>(jr,  iL) = v(s(ti)) + ëu(s(jL))  - v(s(9)s(h)) - v(s()L)-l&j)-ls($)).

Since n = s(h)-ës(9)-ës(9~)  E N, the identity v(s(jr)s(h)) + v(n) =
v(s(9)s(iL)n)  gives

(Ic, - @)(9, A) = u(a(9))  + v(s(Q)  - w(s(9lL))  = 6(v 0 s)(9, jL),

and [$I = d(v]N),  as desired. Cl

Proof of Theorem 4.1.19.  Let G be a perfect group, let (E, cp) be a
perfect central extension of G with kernel ker cp = K, and let A be a trivial
E-module. The exact sequence of Theorem 4.1.20 becomes

0 = Hí(E,  A) =+ H1(K, A) 2 H2(G,  A) 3 H2(E, A).

Now for (E, ëp)  to be the universal central extension of G, E must be
perfect and H2(E, A) must vanish for every A. So this can happen only



1. Universal central extensions and H2 181

if H1(K, A) = Homz(K, A) 3 H2(G,  A) is an isomorphism for every A.
But by Theorem 4.1.13, H2(G,  A) ì=  Homa (HZ (G, Z) , A), so we must
have

Homz(K, A) E Homz  (HZ (G, Z) , A)

for every abelian  group A, which is only possible if K c H2 (G, Z). Fíur-
thermore, from the description of a in Theorem 4.1.20, we see that the
P-cohomology  class of the extension of G by K must correspond to an
isomorphism Hz (G, Z) --+ K, which we can take to be the identity after
reparameterizing  K .  Cl

Remark. Milnor in [Milnor]  gives a different proof of Theorem 4.1.19,
by identifying the kernel of the map [F, F]/[F, R] + [F, F]/R  in Theorem
4.1.3 directly with H2(G, Z). This comes from applying the analogue in
homology of Theorem 4.1.20 to the group extension

This basically concludes the discussion of the relationship between cen-
tral extensions and homology. However, for future use in studying the
homology of groups such as SL and GL, we mention a few more basic facts
about group homology.

4.1.21. Definition. If H -% G is a homomorphism of groups and A is
a G-module (viewed also as an H-module via a), there are induced maps
(Y* : H.(H,  A) -+ H.(G, A). (Merely take the complex defining H. (H, A)
and apply cr to each copy of H.) When (Y is the inclusion of a subgroup,
this map is commonly called corestriction,  since it is the analogue in
homology of Hí(G,  A) z H’ (H, A). However, when H is of finite index
T = [G : H] in G, there is also a natural map in the other direction,
called the transfer, sometimes denoted Tr$ or (Y!. This may be defined
as follows. Note that ZG is naturally the free ZH-module on the set H\G,
so that if A is a free ZG-module, Ho(H, A) 2 Ho(G,  A)H\G.  (This uses
the fact that H\G is a finite set, since in general we only get a direct sum
of copies of HO (G, A), not a direct product.) Thus there is a diagonal

T times

map Ho(G,  A) + Ho(H, A) Z Ho(G,  A)H\G,  given by a H (a),
called the transfer. In general, we can resolve A by free ZG-modules, use
Corollary 4.1.10, and do this to each step of the resolution.

There is another equivalent way of defining corestriction which is some-
times useful. Namely, we can use Shapiroís Lemma (Corollary 4.1.12),
which sets up a natural isomorphism Hj(H,  A) 2 Hj(G, ZG @zH A). The
map (Y* is easily seen to be the composition of this isomorphism with the
map Hj(G, ZG  ë&H  A) + H.(G, A) induced by the map of G-modules
ZG @&H A + ZG @zG A E A coming from the fact that A is a G-module
and not just an H-module.
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4.1.22. Proposition. If cx : H L) G is the inclusion of a subgroup of
finite index r = [G : H] and A is a G-module, then CY, o cr! is multiplication
by r on H.(G, A).

Proof. If A is free, then Ho(H,  A) E Ho(G,  A)H\G  and

T times T times

a*OcxycL)=a*(~)=h=m.

In general, we can resolve A by free ZG-modules, use Corollary 4.1.10, and
apply this at each step of the resolution. Cl

4.1.23. Theorem. If G is a finite group of order r and A is a G-module,
then Hj (G, A) is a group of exponent r for each j > 0, and Hj (G, Z) is a
finite abelian  group of exponent r for each j > 0.

Proof Let H be the trivial one-element subgroup of G. Then Ho(H,  A)
= A and Hj(H, A) = 0 for j > 0 (this is obvious from Definition 4.1.7).
Applying Proposition 4.1.22 to the inclusion (Y of H into G, we see that
oI* o Q! is multiplication by r on Hj (G, A), while of course this composite is
zero for j > 0. So multiplication by r on Hj(G,  A) acts by zero for j > 0.
This proves the first statement.

Furthermore, the abelian  groups Pj in (4.1.8) are finitely generated if G
is finite. So each Hj(G, A) is finitely generated if A is finitely generated,
in particular if A = Z. Since a finitely generated abelian  group of finite
exponent is finite, the last statement follows. 0

4.1.24. Corollary. Let G be a finite group, let p be a prime dividing the
order of G, and let Pp be a Sylow  p-subgroup of G. Then for each j > 0,
the natural map Hj(P,, Z) + Hj(G,  Z) is surjective onto the p-primary
part.  In particular, if Hj(P,, Z) = 0, then Hj(G,  Z) has no p-torsion, and
if Hj(P,, 9) = 0 for each p dividing the order of G, then Hj(G, Z) = 0.

Proof. Apply Proposition 4.1.22 to the inclusion (Y : Pp - G. Thus
CK, o cr! is multiplication by [G : Pp], which is relatively prime to p, and is
thus an isomorphism on the pprimary part of Hj(G,  A) for j > 0. So a,
is surjective on the p-primary part. Cl

4.1.25. Exercise. Let G be a cyclic group of finite order r, and identify
ZG with Z[t]/(P - l), where t is a generator of G. Show that

where N is multiplication by 1 + t + . . . + tî-l,  gives a free resolution of the
trivial G-module %. Deduce that Hj(G, Z) = 0 for j positive and even, and
that Hj(G,  Z) g G for j positive and odd. Show also that Hj(G, Z) = 0
for j positive and odd, and that Hi(G, Z) Z G for j positive and even.
The generator of H2(G,  Z) corresponds to the non-trivial central extension

0 + Z r, Z + Z/r -+ 0.
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4.1.26. Exercise. Let V be the Klein 4group, the subgroup

((B i ;), (; ;1 ;); (; ; !l).(s J61  !I)}

of SO(3). (The ìVî stands for Vieng-uppe,  German for ì4group.ì)

(1) Show by direct calculation that Hz(V, Z) %’ Z/2, and deduce from
Theorem 4.1.13 that

P(V, Z/2) 2 (Z/2)3.

(2)

(3)

Determine which elements of this group correspond to the various
groups of order 8 which are central extensions of V by Z/2.
Examples 4.1.5 may be interpreted as exhibiting Z/2 as a quotient
of Hs(SO(3),  Z). Show that the inclusion V L) SO(3) induces a
non-zero map Z/2 s Hs (V, Z) + Hz (SO(3), Z) which is a split-
ting for this Z/2 factor, by noticing that the inverse image V of V
in SU(2)  is the quaternion group Q of order 8. (Since Q is non-
abelian,  this means the central extension of SO(3) is non-trivial
on the subgroup V.)
Show that Hi(Q, Z) Z V (this is almost trivial) and that Hz(Q,  Z)
= 0 (it helps to construct a suitable resolution). Thus the quotient
map Q + V induces an isomorphism on Hi but is not surjective
on Hz.

4.1.2í7. Exercise. This exercise will exhibit an interesting finite example
of a universal central extension.

(1)

(2)

(3)

(4)

Let G be the subgroup of SO(3) consisting of rotations mapping
a regular icosahedron to itself. Since G acts transitively on the 20
faces of the icosahedron, and each face is an equilateral triangle,
and there are clearly 3 rotations stabilizing each face (the identity
and rotations by 2~13 in either direction about an axis through
the center of the face), G is a group of order 60. It is clear that the
stabilizer Sf of a face is a Sylow S-subgroup and that the stabilizer
S, of a vertex is a Sylow 5-subgroup.
Show that one may position the icosahedron so that two of the
edges are parallel to each of the three coordinate axes in R3. De
duce (by looking at the effect of rotations by r around these axes)
that G contains the group V 2 Z/2 x Z/2 of Exercise 4.1.26 as a
Sylow 2-subgroup.
From Exercise 4.1.25, Hz(Sf,  Z) = 0 and Hz(&, Z) = 0. From
Exercise 4.1.26, Hz(V, Z) 2 Z/2. Deduce from Corollary 4.1.24
that Hg(G, Z) has order at most 2.
Show that G is perfect. In fact it is isomorphic to the simple group
As, and is the smallest non-trivial perfect group. (One way to do
this is to divide the 30 edges of the icosahedron into 5 equivalence
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(5)

(6)

(7)

4.1.28.
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classes of 6 edges each, where each equivalence class consists of
the edges pointing in directions parallel or perpendicular to the
direction of a given edge. Then you just need to show that G acts
faithfully, i.e., without kernel, by permutations of the 5 equivalence
classes. Since A5 is the only subgroup of Sís  of order 60, this shows
G is isomorphic to the simple group As.)
From (2) and (3),  deduce that H2(G,  Z/2) has order at most two,
and that either Hs(G, Z) = 0 or else G has exactly one non-trivial
central extension by Z/2. In this latter case, show that this must
be the universal central extension of G.
Let G be the inverse image of G in SU(2). This is a central exten-
sion of G by Z/2, called the binary icosahedral group. It is a
group of order 120. Show that G -+ G is not trivial, by using (2)
of this Exercise and (2) of Exercise 4.1.26.
Deduce from (4) and (5) that G is the universal central extension
of G, that H2(G, Z) g Z/2, and that G is perfect. (For another
proof that G is the universal central extension of G, you can show
that Hs(G,  Z) = 0 using (3) of Exercise 4.1.26.) Since SU(2)
can be topologically identified with S3, it follows that SU(2)/G
is a compact S-manifold such that ~1 (SU(2)/G)  is perfect, hence
with Hi(SU(2)/G)  = 0. It follows from Poincare  duality that
H#W(B)/G) = 0 as well. Thus SU(2)/G  has the same homology
groups as S3, and is known as the Poincar&  homology 3-sphere.

Exercise. This exercise will provide some more finite examples
of universal central extensions.

(1)

(2)

(3)

Show from the identity

(; d!!l) (:, ;ì) (d;’ ;) = (:, (d2;ly
and its transpose that if F is a field with more than 3 elements (so
that there is an element d E FX with d2 # l), then SL(2, F) =
E(2,  F) is a perfect group.
Show that if F, is a finite field with Q elements, then SL(2, F,)
has order q(q2 - 1). Note that in fact the restriction in (1) on the
cardinality of F is necessary, since SL(2, F2) 2 Ss and SL(2, Fís)
is a solvable group of order 24.
From (1) and (a), SL(2, F4 ) is a perfect group of order 4(15) = 60.
Show that it is isomorphic to the group G g A5 of Exercise 4.1.27
by showing that G acts faithfully as a permutation group of the
set of 5 elements

i?l(F4)  =&f (F;  \ ((0, o)})/F,x g IF4 u {m}.

Deduce from Exercise 4.1.27 that Hs(SL(2,  lFí4),  Z) has order 2, so
that its universal central extension is an extension by Z/2.
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(4) From (1) and (2), SL(2, F )5 is a perfect group of order 5(24)  =
120 = 3 * 5 . 23. Clearly the Sylow S-subgroups and Sylow 5-
subgroups of this group are cyclic. Show that the Sylow 2-sub-
groups are isomorphic to Q, which has vanishing Hz by (3) of
Exercise 4.1.26. Deduce that Hz(SL(2, IFS), Z) = 0 and that G is
its own universal central extension. In fact SL(2, Fs) is isomorphic
to the binary icosahedral group G of Exercise 4.1.27.

(5 )  GL(3,  IFS)  = SL(3, F2 is a perfect group of order (23 - 1)(23  -)
2)(23 - 4) = 7 .6 .4 = 3 .7 .8. Clearly the Sylow 3-subgroups and
Sylow ëI-subgroups of this group are cyclic. Show that the group
of upper-triangular matrices with lís on the diagonal is a Sylow 2-
subgroup isomorphic to a dihedral group of order 8. Deduce that
WSL(3,  p2),  4 is a finite abelian  2-group,  and see if you can
compute it.

4.1.29. Exercise. Show that group homology commutes with direct lim-
its (cf. Theorem 1.2.5). In other words, if (Ga)crE~,  (e,, : G, + Gp)a<p is
a direct system of groups, if G = 15G,  is the direct limit of the system,
and if M is a G-module (hence also a G,-module  for each (Y, via the map
G, --+  G), then there are natural isomorphisms

Hj(G, M) 2 l%Hj(G,,  M)

for each j. The key to this is the observation that each element of Pj @zG M
involves only finitely many group elements, and thus comes from some G,.

The corresponding statement for cohomology is false, i.e., in general
@(G, M) # lin$P(G,,  M).

4.1.30. Exercise. Let G be an abelian  group (written additively for
purposes of this exercise), and choose an exact sequence

where Fo and Fl are free abelian  groups. (In other words, choose a free
resolution of G as a Z-module.) Let A be a trivial G-module. The exact
sequence of Theorem 4.1.20 becomes

0 --+ Hom(G, A) -+ Hom(Fs,  A) + Hom(Fi, A)

+ H2(G,  A) -+ H2(Fo, A).

Comparing this with the exact sequence coming from the definition of Ext,

0 + Hom(G, A) -+ Hom(Fe,  A) -+ Hom(Fi, A) -+ Exti(G, A) + 0,

deduce that

ker(inf : H2(G,  A) -+ H2(Fo, A)) Z Ext;(G,  A).
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Then using Theorem 4.1.13 and the fact that for an abelian  group,

Hi(G, Z) 2 G (in a natural way),

deduce that inf gives an injection

Hom(Hz(G,  .@, A) L-) Hom(&(Fo,  z), -4.

This being true for all A, deduce that the natural map

must be surjective.

4.1.31. Exercise. Let F be the free abelian  group on generators tl, t2, . . . ,
t,, so that

R = ZF = Z[tl, t;ë,  t2, t;l, . . . , t,, t,ë].

Construct a free resolution for the trivial R-module Z of the form

Q_,R+Rî+...+R~  -,...+Rî+R-tZ+O.(7

(If you canít see how to do this in general, first try the special cases n = 1
and n = 2.) Use this resolution to compute H.(F, Z). Deduce that there
are natural isomorphisms

H.(F, 25) = i\ F,

where the right-hand side denotes the exterior algebra on F (viewed as a
free Zmodule)  .

4.1.32. Exercise.

(1) By Exercises 4.1.30 and 4.1.31, if G is a finitely generated abelian
group, written in the form Fo/Fl, where FO is free on n generators,
then there is a surjection

Show that this map factors through Aî(G).  If G is written with
multiplicative instead of with additive (Z-module) notation, then
A2(G)  is the universal abelian  group generated by elements g A h,
g, h E G, with g A g = 1, such that the map (g, h) H g A h is
bilinear, i. e.,

km)  A h = (91 A h)(gz  A h).

Note that these relation imply (g A h)-’ = h A g, g, h E G.
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(2) Deduce from Exercises 4.1.29 and 4.1.31 that for any torsion-free
abelian  group G, there is a natural isomorphism

(3) Suppose G = Gr CB (Z/k), where k > 1 and Gi is an abelian  group
written additively. Show that

Deduce using the structure theorem for finitely generated abelian
groups and induction on the number of finite cyclic summands that
there is a natural isomorphism

i&(G,Z)ì?\G

for any finitely generated abelian  group. Then use Exercise 4.1.29
to conclude that this is valid for any abelian  group. Note that this
calculation is consistent with the calculation that Hz(I.7,  Z) 2 Z/2
in Exercise 4.1.26(l).

2. The Steinberg group
Weíre now ready to apply the theory of the previous section to the perfect
group E(R) of matrices over a ring R. Recall from Lemma 2.1.2 that this
has generators eij (a), i # j, a E R, satisfying the relations

eij(a)ejj(b) = ej.j(u + b); (4
eij(u)%(b)  = w(b)eij(a), j # k and i # 1; (b)

eij(u)ejk(b)eij(u)-ëe~~(~)-’  = ea(ub),  i,j, k distinct; (c)

eij(u)eki(b)eij(u)-ëear-’  = ekj(-bu), i,j, k distinct. (d)

4.2.1. Definition. Let R be a ring. For n 2 3, we define St(n, R),  the
Steinberg group of order n over R, to be the free group on generators
xii(u), i # j, 1 I i, j I n, a E R, divided by the relations

Xij(U)xij(b)  = xij(U + b); (4

xij(u)x~~(b) = xkl(b)xij(u), j # k and i # 1; (b)

~i~(U)~~~(b)x~~(u)-lx~~(~)-’  = xik(~b), i,j, k distinct; (c)

X~~(U)X~~(~)X~~(U)-'X~~(~)-~  = xkj(-bu), i,j,  k distinct. (d)

It is immediate that St(n,  R) is a perfect group and that there is a unique
surjective  homomorphism (Pi : St(n, R) + E(n, R) satisfying xij(u) H
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eij(a). Clearly there are natural maps St(n, R) + St(n + 1, R). However,
unlike the situation with the maps GL(n, R) + GL(n + 1, R), it is not
clear that these are injective (and in fact this is not always the case). We
let St(R), called simply the Steinberg group of R, be the inductive limit.
In other words, this is the universal group on generators xij(a), i # j,
1 5 i, j < co, a E R, satisfying the above relations. By construction, there
is a canonical map cp : St(R) ++ E(R) (the limit of the (Pi as n -+ CO).

The definition can be simplified a bit because relation (d) is redundant.
By relation (a), x~(a)-’ = xij(-a).  Multiplying (c) on the left by xij(a)-’
and on the right by xij (a), we obtain

xj#)x&)-lxj&)-l Xij(u)=Xij(U)-lXik(Ub)Xij(U)=Xi~(ub)

(using (b) and the fact th t .a a, j, k were assumed distinct), which is the
same as (d) if we renumber indices and replace b by a, a by -b. Thus it
suffices to assume (a), (b), and (c).

Note also that the group St(R) is functorial in R, since if (L: : R + S is
a homomorphism of rings, there is a unique map from the free group on
generators zij(u), a E R, to St(S) sending zij(u) to xij(a(a)),  and since
this is compatible with the relations in St(R), it factors through a map
(Y*  : St(R) + St(S).

4.2.2. Definition. Let R be a ring. We let KS(R) = ker(cp  : St(R) -++
E(R)). This is functorial in R since the groups E(R) and St(R) and the
homomorphism ëp  are functorial.

The rationale for this definition is that Kz(R) vanishes precisely when
all relations among matrices in E(R) follow from the ìobviousî relations of
Definition 4.2.1. Thus Kz(R) measures the ìnon-obviousî relations among
elementary matrices over R, just as Kl(R) measures the failure of general
invertible matrices to be expressible in terms of elementary matrices.

4.2.3. Lemma. Let R be a ring and 3 5 n < 00. The subgroup of
St(n, R) generated by all Xij(u), u E R, with i < j is nilpotent, and (Pi
restricted to this subgroup is an isomorphism onto the upper-triangular
subgroup of E(n, R). Thus K2(R) has trivial  intersection with the sub
group of St(n, R) generated by all zij(e),  a E R, with i < j.

Proof. Let N(n, R) be the subgroup of St(n,  R) generated by all xij(a),
a E R, with i < j. This contains the subgroup Nr generated by all xrj(a),
a E R, 1 < j 2 n. By relations (a) and (b), Nr is abelian  and Rî-’  surjects
onto Nr via

(u2, u3, "', u,) - X12(u2)X13(u3)~'~xl~(urz)~

But under (Pi, Nr maps to the upper-triangular matrices with lís on the
diagonal whose other non-zero entries are all in the first row, so the com-
position RnP1 --H Nl % E(n, R) is injective and (Pi must be injective on
Nr . By relation (c), N(n,  R) normalizes Nr . Let N2 be the subgroup of
St(n, R) generated by all xij(e),  a E R, with i < j and i = 1 or 2. Then
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Nz/Ni is generated by the images of the xzj(a),  a E R, 2 < j 5 n. Argu-
ing as before, the group generated by these is also abelian  and an image of
Rnw2, and maps to the upper-triangular matrices with lís on the diagonal
whose other non-zero entries are all in the second row. So (Pi is injective
on this group as well and so on Nz. Continuing inductively, one sees that
N(n, R) is an iterated extension of abelian  groups and maps isomorphi-
tally under (Pi to the group of upper-triangular n x r~ matrices with lís on
the diagonal. 0

4.2.4. Theorem. Let R be a ring. Then K2(R) = ker(cp  : St(R) -t E(R))
is an abelian  group, and is precisely the center Z(St(R))  of St(R). Thus
St(R) is a central extension of E(R).

Proof. Let x E Z(St(R)).  Then ëp( z must commute with p(y) for all)
y E St(R), and since cp is surjective,  v(x) E Z(E(R)).  But E(R) has trivial
center, since an n x n matrix canít commute with each eij(l)  unless it is
a diagonal matrix and all its diagonal entries are equal, and E(R) consists
of infinite matrices whose diagonal entries are eventually 1. So cp(z)  = 1,
showing that Z(St(R))  C Kz(R).

For the reverse inclusion, suppose z E Kz(R), and write

2 = Xi& (ai) . . . xi,j,, (4, where ei,j, (al)  . . . ei,,j, (4 = 1

in E(R). Choose N larger than all the indices ii,. . . , i,, j,, . . . , j,. Then
for any 1 5 n, any lc < N, and any a E R,

xiljl (~l)xkN(++j,  (al)-l =
xkN(a), k # .h,
xi,N(ala>zkN(a>, k =jl,

so x normalizes the subgroup AN generated by the zkN(a),  k < N and
a E R. But by Lemma 4.2.3, the restriction of cp to AN is injective. So for
Y E AN, h?/-lY-l)  = (P6+&h-'(~c>-'(Pb)-1  = cp(Y)cP(Y)-’  = I and

-’zyz Y-’ = 1. This shows x commutes with zkN(a) for any N larger than
all the indices ii,. . . , i, and ji, . . . , j,, for any k < N, and for any a E R.
Since these generate St(R) because of relation 4.2.1(c), x is central. Thus
Kz(R> C .Wt(R)).  0

4.2.5. Example. Let R be any ring, and let

z = (x12(1)x21(-1>~12(1>)4.

Then

.(x)=((i :)(:1 Y)(i :))’
=pl ;)ì=(; :)1

so x E K2(R)  and hence x is central in St(R). It will turn out that when
R = Z, x has order 2 and generates Ks(Z).

We are almost ready for the main theorem of this section, but first we
prove a number of easy group-theoretic identities.
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4.2.6. Lemma. Let G be a group and let u, v, w E G. Denote the
commutator uvu- l21-l by [u, v]. Then

(a) [u, v] = [v, u]-ë.

(b) [u, vlb, 4 = b, 4[v, [w, 41.
(c) (Jacobi identity) If G’ = [G, G] is commutative, then

b, b, 4lb, bA 4l~w, b-4 VII = 1.

Proof.  (a) is trivial. For (b), note that

[u, vw][v, [w, u]] = u(vw)u-l(vw)-lv(wuw-lu-l)v-l(uwu-lw-l)
= (uv)(wu-lw-lv-l)(vwuw-~)u-lv-yuwu-lw-l)

= k4 vlb, WI.

For (c), first rewrite (b) as

[v, [w, 41 = [UT vwl-v4 Vl[% WI.

Cyclically permuting U, v, w and multiplying gives (provided commutators
commute)

4.2.7. Theorem. Let R be a ring. Then St(R) is the universal central
extension of E(R).

Proof.  By Theorem 4.2.2, St(R) is a central extension of E(R), and
relation 4.2.1(c) shows St(R) is a perfect group. By Theorem 4.1.3, it
suffices to show that every central extension of St(R) is trivial. Let (U, IJ)
be a central extension of St(R). If 2, y E St(R) and we choose X, Y E U
with $(X) = 2 and q(Y) = y, then [X, Y] is independent of the choices
of X and Y, since changing X or Y by an element of Z(U) will not affect
the commutator. Thus it makes sense to refer to [+-l(z), $-l(y)]  as a
well-defined element of U. We will define a splitting map s : St(R) + U to
$ by sending

[z, Yl H M-74,  V(Y)1
for suitable 2 and y.
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42.8. Lemma. In this situation, if j # k, i # 1, and a, b E R, then

[+-l(zij(a)),  $-ë(324(b))]  = 1 in U.

Proof. Choose h distinct from i, j, k, 1 and choose

u E tieí(m(l)), 2, E $-ë(nj(a)), and w E ti-ë(w(b)).

Then [u, w] E +-l(zij(a)).  There must be elements c, c’ E Z(U) such that
cuw = wu, cívw = WV. Then

[[U, 211,  w] = (uvu-~Y-l)w(v~w-~~-~)w-~

=  UVu-ë)cíw(uV-~)(u-rw-l>(
= cíuwu-1w(u21-1)(w-1U-1c-1)

= cíc-luV(nu)(w-lV-l(cí)-l)U-’

= (Uww)(w-líu-lu-l)  = 1. 0

4.2.9. Lemma. In this situation, if h, i, j, k are distinct and a, b E R,
then

[tiel(xhj(a)),  tieí(xjk@))l  = [$~-~(xhi(l)), +-ë(xik(ab))l  in U.

Proof. By relations 4.2.1,

hj(a>, x&)1 = [m(l), w(ab)l  = xdab) in St(R).

Choose u E +-ë(zhi(l)),  w E $-ë(+(a)),  and w E $I-ë(zjk(b)).  Then
[u, w] E $-ë(zhj(a)),  [v, w] E $-ë(zirc(ab)),  and [u, w] = 1 by Lemma
4.2.8. Furthermore, [u, V] commutes with u, with V, and with [TJ,  w] by
Lemma 4.2.8. So if G is the group generated by u, V, w, [G, G] is commu-
tative. Now apply (c) of Lemma 4.2.6. We obtain

b, I? wll[c  [w, 41k4 b, 41 = 1,

or since [w, U] = 1, [[u, v], w] = [u, [v, w]], which is what we want. êI

Proof of Theorem 4.2.7 (continued). Recall that we want to define a
splitting map s : St(R) + U. Since St(R) is given by generators and re-
lations, it will be enough to define elements sij(a) E U, i # j and a E R,
satisfying the same relations as the xij(a)  E St(R). Then there will be a
unique homomorphism s : U + St(R) sending xij (a) I+ sij(a),  and pro
vided we choose sij(a) E +-ë(xij(a)), s will split $J and thus demonstrate
that (U, $J) is a trivial extension.

So let a E R, i # j. Choose k distinct from i and j and define
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By Lemma 4.2.9, this is an element of $-ë(x~(a))  independent of the
choice of k. We will show that the elements Sij(a) satisfy the relations
4.2.1. Lemma 4.2.8 immediately gives relation 4.2.1(b). To check 4.2.1(a),
let a, b E R and choose lc distinct from i and j. Choose u E +-ë(qk(l)),
u E +-ë(~/cj(a)), w E $-l(ICkj(b)). Then by Lemma 4.2.6(b),

sij (a)sij (b) = [F ~1 [u, W] = [u, VW] [u, [w, u]].
But [w, U] commutes with u by Lemma 4.2.8 and VW E $ë-l(xkj(a  + b)), so

sij(a)sij(b) = [ë% VW] = [ti-ë(Gk(l)),  $-ë(zkj(a  + b))],

which by definition is sij (a + b). Finally, we need to check relation 4.2.1(c),
but this follows immediately from Lemma 4.2.9. 0

4.2.10. Corollary. If R is any ring, there is a natural isomorphism
Kz(R)  --+ Hz(E(R),  Z).

Proof. This follows immediately from Theorems 4.1.19 and 4.2.7. 0

4.211. Remark. Something that comes out of the construction used
in the proof of Theorem 4.2.7 is that if 2 and y are commuting elements
of E(R), then [Ví(X),  Fí(Y)] is a well-defined element of St(R) which
maps to [z, y] = 1 under cp, in other words, an element of Kz(R).  In fact,
this is the most useful way of constructing elements in Kz(R),  and under
favorable circumstances, K2(R) is generated by such elements.

A case of particular interest is when R is a commutative ring. Then the

units of R, RX, form an abelian  group, and for u E RX, : ,yl
( >

E

E(2, R) by Corollary 2.1.3.

4.2.12. Definition. Let R be a commutative ring, and let u, 21 E RX.
The Steinberg symbol {u, v} is defined to be the element [(p-ë(d12(~)),
~-ëb-h(~))1  of WR) (as  in Remark 4.2.11),  where

(Since dlz(u)  and dls(w) commute in E(R), this indeed defines an element
of Kz(R).)

Note from the identities used in Corollary 2.1.3 that

d12(u)  = e12(21)e21(--21-1)e12(u)e12(-1)e21(1)e12(-1),

d13(2))  = e13(w)e31(-21-1)e13(21)e13(-1)e31(l)e13(-l),

SO that if we define wij(u) E St(R) and hij(u) E St(R) by

Wij(u)  =def  zij(U)zji(--ëzL-1)2ij(ëLL), hij(u) =&f Wij(th)Wij(-I),



2. The Steinberg group 193

then

and
{% ?J} =def  [hl2(u),  h3(V)].

The Steinberg symbols can also be described in terms of group homology.
Note that if G is a free abelian  group on two generators s and t, then
ZG FZ Z[t,  t-l,  s, s-l], and the trivial G-module Z has the free resolution

Furthermore, if 0 is the automorphism of G interchanging t and s, then
the following diagram commutes:

0  - ZG (ë-l>  l-ë),  ZG ~ ,&, (t-1ts-1)+  ZG t-1,  SC1, .-&

II -0 1 0 u( >lu 0

0  - ZG , ?&(s-Ll--t),  ZG ~ ZG (t--l,  ZG t-1  e-+1,

Thus H.(G, Z) is the homology of the complex

with IS acting by -1 on the first Z and interchanging the two summands
in the Z2, and in particular Hs(G, Z) is free abelian  on a generator that
is sent to its inverse if we interchange t and s. Thus Hz(G, Z) is naturally
isomorphic to A2 G, the alternating tensor product or second exterior power
(this is a special case of the result of Exercise 4.1.31). The commuting
elements di2(~)  and d13(v)  of E(R) define a map cx : G -+ E(R) with t I-+
d12(u),  s H d13(w),  and cy* sends the canonical generator t A s of Hz(G,  Z)
to the Steinberg symbol {u, V} in Hs(E(R), Z) Z Ks(R).  In fact, the
diagonal matrices in E(3, R) are an abelian  subgroup isomorphic to (RX)2
(the determinant must be 1, so the (3, 3)-entry is determined by the (1, 1)
and (2, 2)-entries), generated by elements of the form d12(u)  and d13(v).
By Exercise 4.1.32, Hz((R~)~, Z) g A2((Rx)ë),  which evidently contains
(RX x (1)) A ((1) x RX) as a direct summand. The subgroup of Ks(R)
generated by the Steinberg symbols is the image of (RX x { 1)) A ({ 1) x RX)
in Hz(E(R),  Z) % Kz(R).

4.2.13. Example. Of course, the whole definition would be a little silly
if {u, 7~) were always trivial. However, if u = 21 = -1 and R = Iw, then
d12(u)  and d13(w)  generate a Klein 4-group  in SO(3) c SL(3, Iw) (see
Exercise 4.1.26),  and the inverse image of this 4-group  in the universal

covering group SU(2)  c SLZ) is a quaternion group Q. The same
holds if we first embed SL(3, R) in SL(n,  IF%)  for any n > 3 and then take



194 4. Milnorís K-J

the universal cover SLTR),  since the embedding SO(3) L) SL(n, IF!)
induces an isomorphism on ~1 and thus the induced mapping SU(2)  +

SL?R) is injective  (compare Example 1.6.13 and Examples 4.1.5). Since

1% SLrl) is a quotient group of St(R),  this proves that { -1, - 1) maps
to an element of order 2 in the corresponding quotient of Ks (Iw).  In fact this
quotient group splits (see (2) of Exercise 4.1.26, or else note that by Lemma
4.2.14 below, (-1, -1) can have order at most 2), so (-1, -1) E Ks(Iw)
has order exactly 2.

4.2.14. Lemma. Let R be a commutative ring. The Steinberg symbol

mapRXxRX a Kz( R) is skew-symmetric and bilinear, that is, {u, w} =
{v, ~1~’ and {WW, v) = (~1,  u}{.zL~,  v}.

Proof. This is immediate from the homology approach, since as men-
tioned above and proved in Exercise 4.1.32, H2(G,  Z) 2 A2(G)  for G an
abelian  group. Alternatively, we can check this directly from the definition
above, since

1 0 0
(p(w23(1))  = 0 0 1 .

( )0 -1 0

Thus (P(w23(1)) conjugates dis(zl)  to die and vice versa. To prove skew-
symmetry, note that

{v, u} =def  [(p-1(dl2(7í)),  +@13(ëLL))]

=  [W23(1)(P-ë(h3(~))W23(1)-1, W23(1)(P-ë(h2(~))W23(1)-1]

=  W23(1)[(P-ë(h3(v)),  +(d12(U))]W23(1)-1

=  W23(1){%  w}-’ W23(l)-l  = {U, 21)-l.

Here we have used Lemma 4.2.6(a) and the fact that KS(R)  is central in
St(R).

To prove bilinearity, note that by Lemma 4.2.6(b),

{ë(I,  01212) =def  [(P-1(h2(u)),  +(&3(Vlw2))]

=  [+(&2(u)), ëP-1(d13(~l))+(d13(~2))]

=  [+(&2(U)),  ëf-1(d13(~1))][(P-1(~12(u)),  +@13(w2))]

[(p-1(dl3(%)),  [+(&3(V2)),  (o-ë(h2(u))]]-’

=  {u, wl}{% V2}[(P-1(d13(~l)), 1% w2}-1]-1

=  (ë11, VI){% v2),

again since Ks(R)  is central. Bilinearity in the other variable follows from
the skew-symmetry. 0

Most of the rest of this section will be taken up with calculations using
the relations (4.2.1), in order to give a slightly more convenient descrip-
tion of the Steinberg symbols and in order to prove that they satisfy two
additional relations. These relations are important for the applications of
K2(R)  in the next section.
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4.2.15. Lemma. If R is any ring and u E RX, the elements

wij(u)  =def  zij(ë1L)zji(--u-1)2ij(ëu.), &j(u)  =def  W&)ìij(-1)

of St(R) defined in 4.2.12 satisfy

(w&))-1 = (m&u)), Wij(U) = uJj+u-l),

hij(l)  = 1. In addition, if u, v E RX and lc # 1, i # j, then

w&J), i, j, k, 1 all distinct,

~k1(4%(4  (wl(4)-1  =
2uu (-ZAJ), k = i, i, j, 1 all distinct,
w,l(_vu)

2 7 k = j, i, j, k all distinct,

w~~(-u-~vu-~), k = i, j = 1.

Proof. To begin with, by (4.2.1)(a),

%j(ì)Wij(-21)  = zi~(u)~cji(--u-~)z~j(ëu)z~j(--21)zji(u-~)2ij(-~)

= zi~(u)ì~~(--ëu-ë)zj~(21-~)zij(--u)

= Zij(U)Z&U) = 1,

so (wjj(u))-l = wij(-u).  In particular, hi = zuij(l)wij(-1) = 1. The
fact that wkl(u) and wij(v) commute if i, j, k, 1 are all distinct is obvious
from (4.2.1)(b). Next suppose i, j, 2 are all distinct and k = i. We have by
(b), (c), and (d) of (4.2.1)

WiZ(.u)G&)  (%l(u))-l

= ~i1(2C)21i(--U-l)5iz(ëLL)  (Zij(V))  ~cil(-~)21i(~-ë)~il(-u)

= z&)2&?r1) (zij(v))xli(u-ë)~il(-2l)

= 2il(U) (2~j(-u-1zJ)~&J))  Q(-u)

= xij(-~)21j(--21-1íu)~cij(21)

= z&u%).

Similarly
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so

WZ(U)Wj(W)  (wiz(ëzL))-l = w~~(u)Icij(w)Icji(-w-1)2ij(w) (Wil(U))_l
= qj ( -u-lw)zj~  (w-lu)zlj  (-u-lw)
= wu (-u-h)

and

which gives the second and third relations.
Finally, to get the last relation, choose 1 distinct from i and j and note

that by what weíve already proved, wij(w)  = wil(l)wu (w)w~~(-1).  So

%(4%(4 (wj(u))-l  = w&) (wil(l>~z~(v)2uil(-l)) (w&))-l

= w~~(-2L-~)w~~(wu-~)w~~(zL-1)

= zuj~(-U-lwu-l).

Taking u = v in this relation gives

w&u)  = wj~(-u-ëuu-ë)  = w+(-u-l). q

4.2.16. Corollary. If R is a commutative ring and u, w E RX, then

In other worck, if we identify RX with a subgroup of E(R) via u H dlz(u),
then h12 gives a section RX + St,(R), and the Steinberg symbol is the
inverse of the associated cocycle  in Z2(RX,  Kz(R)) as defined in the proof
of Theorem 4.1.16.

Proof. We have

(ë21,  u) =  blZ(U),  h3(w)l

=  h2(+13(~)(h2(u))-1(h13(w))-1

=  hl2(u)Wl3(w)W13(-1)  (w12(1)w12(-u))  w13(1)w13(-w)

=  h2(U)W13(V)  (w32(1)w32(-u))  %3(-w)

=  hl2(U)Wl2(~)W2(+J~)

=  hl2(U)W12(w)W12(-1)W12(1)W12(-21í11)

=  h2(74h12(4(h2(74)-1.  0
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4.2.17. Theorem. If R is a commutative ring, the Steinberg symbol map
RX x RX (ë1- Kz (R) satisfies the additional relations

(a) {q--U}=lforUERX,
(b) {u,l-u}=lforu~R~,l-UER~.

Proof. (a) By Corollary 4.2.16, we need to show that h12(~)h12(-~)  =
h12(-u2).  But by the last identities of Lemma 4.2.15,

h12(U)h12(-U)  =  w12(~)~12(-l)~12(-~)w2(-1)

=  w21(~-ì)w2(-1)

= W~2(-K2)W12(-1)  = h12(-4.

(b) By Corollary 4.2.16, we need to show that

h12(u)h12(1-  tL) =  h2(u - uî).

But

hz(u)h2(1  - u)

=w12(u)w12(-1)~12(1  - u)w2(-1)

=wl2(~)w21(1)w12(1  - u)w2(-1)

=w12(u)221(1)~12(--1)~21(1)w12(1  - uh2(-1)

= (W12(2l)Z21(1)W12(-~))  W2(~)Q2(-1)W12(1  - u)

(w12(u  - 1)221(1)w2(1  - 7J)) %2(-l)

ë~12(-~2)w~2(~)~12(-1)2u12(1-  u)212(-(1  - 42)w12(-1)

=212(-u2)212(4521(-7J-1)3a2(4

x12(-1)21112(1  - 21)212(-(l-  u)2)w12(-l)

=212(u  - u2)z21(-U-1)z12(u  - l)w2(1-  u)a2(-(1  - 42)w(-1)

=212(u - u2)521(-K1)512(u  - 1)x12(1  - u)

x21(-(1 - u)-1)212(1  - u)z12(-(1  - 42)w12(-1)

=212(u - u2)~21(-u-1)221(-(1  - 4-7512(21.  - .112)w2(-1)

=212(u - u2)221(-u-1(1  - 2L)-7212(2L  - u2)w12(4)

=w12(u(l-  U))W12(-1)  = h12(u  - uí). q

4.2.18. Corollary. If R is a finite field, all Steinberg symbols vanish in
K2(R).

Proof. Let R = IF,,  the finite field of q elements. Since JF: is cyclic of
order q - 1, we may choose a generator u for IF:, and by bilinearity of the
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symbol map, it suffices to prove that {u, U} = 1 (we are using multiplicative
notation for Kz). By skew-symmetry of the Steinberg symbol, {u, U} =
{u, u}-l,  i.e., {u, u} has order at most 2. If q is a power of 2, then -1 = 1
in IF,,  so by (a) of the Theorem, {u, U} = {u, -u} = 1. If q is odd, then
by bilinearity and (a) of the Lemma,

(24, u} = (21, -u}{u,  -1) = {U, -1) = {U, 73) = {U, U}?

So if 9 is even, we again conclude that {u, U} = 1. If 9 is odd, then
-1 is not a perfect square in IF,.  Suppose we can choose w E IF: such
that neither w nor 1 - w is a perfect square in IF,. By (b) of the Theorem,
{w, 1 - w} = 1. Bu since neither w nor 1 - w is a perfect square, theyt
are both odd powers of U, so {w, 1 - w} is an odd power of {u, U} and
{u, U} = 1. So itís enough to show a suitable w exists. Since -1 is not a
perfect square in F,, we need to show there is a w, not a perfect square,
such that w - 1 is a perfect square. But such a w exists, since otherwise
adding 1 to a perfect square would always give a perfect square in IF,, and
1, 2, . . .) -1 would all be perfect squares, a contradiction. Cl

4.2.19. Example. If R = Z, then RX has only two elements, 1 and -1.
We saw in Definition 4.2.12 that (-1, -1) has order 2, and this is the only
non-trivial Steinberg symbol, since {u, w} = 1 if u = 1 or w = 1. In this
particular case, relation (b) of Theorem 4.2.17 is vacuous and relation (a)
is trivial. As mentioned in Example 4.2.5, the element

2 = (2~2(1)Ic&l>~c12(l))4  = (w12(l))4

of St(Z)  also lies in Ks(Z).  However

hiZ((_l).  (-1))(hr2(-1))-1(hi2(-1))-1  = (-1, -11-l  = (-1, -1)

by Corollary 4.2.16, and since wis(l)  = (wr~(-l))-~  and his(l)  = 1 by
Lemma 4.2.15, the left-hand side simplifies to

(h12(-1))-2  = (wi2(-1)w12(-1))-2  = (Wi2(-1))-4  = (w&l))4  = 2.

So the element of Ks(Z) constructed in Example 4.2.5 is the same as
(-1,  -1) .

For more complicated rings, the relations in Theorem 4.2.17 are more
interesting. For instance, if R = I&[<], where c = f +i$ is a primitive 6-th
root of unity, then RX is a cyclic group of order 6 generated by 5, and the
group of Steinberg symbols is generated by {c, <}, which can have order
at most 2. But 1 - t = f = e-l, so 1 = {[, 1 - <} = {c, 5-i)  = {<, [}-ë,
so {[, 0 = 1. It follows that (-1, -1) = {c3, S3} = 1 in KS(R). Since
R - C, this shows for instance that the map on K2 induced by the inclusion
R L) Cc kills (-1, -1).
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4.2.20. Exercise. Show that in Corollary 4.2.16, hlz can be replaced by
hij  for any i # j. In other words, if R is a commutative ring and u, v E RX,
then

h&m) = hij(u)hij(v){u,  u}-ë.

(Use the relations in Lemma 4.2.15.)

4.2.21. Exercise. Show that Corollary 4.2.16 implies that if R is a com-
mutative ring, the subgroup of Kg(R) generated by the Steinberg symbols
contains the image of the corestriction map

H~(R~, z) -+ &(E(R), z),

where RX L) E(2,  R) c) E(R) via d12 : u H
( >

1 ,fl . By Exercise

4.1.32, H2(RX, Z) 2 //ì(RX), so in general one canít expect the map
R2(RX,  Z) -+ Hs(E(R), Z) to be injective;  at the very least one has to
factor R2(RX,  Z) ~GZ A2(Rx) by the relations of Theorem 4.2.17. Show also
by looking at the case of R = Z that the corestriction map H2(RX,  Z) +
Hs(E(R),  Z) need not be surjective.

4.2.22. Exercise. Let R be the Dedekind domain Z[m],  the ring of
integers in the real quadratic field Q(a)  with D E N square-free and
not congruent to 1 mod 4. By Theorem 2.3.8, RX is the product of the
2-element group {fl} and an infinite cyclic group. Compute the quotient
of (RX) @ (RX) by the relations of skew-symmetry and of Theorem 4.2.17.
(First show relation (b) is vacuous; in other words, there is no 21 E RX  with
1 - w E RX, since a + bfi can only be a unit if a2 - Db2 = *l.)

4.2.23. Exercise: Morita invariance of K2. Show that for any ring,
there is a natural identification of E(M,(R))  with E(R), and thus of the
universal central extension of the former with the universal central exten-
,;,gthe latter. Obtain a ìMorita invarianceî isomorphism Kz(M,(R))  E

2 .

4.2.24. Exercise: a ring with vanishing K2. Let Ic be a field and let
V be an infinite-dimensional vector space over k. Let R = Endk(V).  Show
that K2(R) = 1. Hint: V is isomorphic to an infinite direct sum of copies
of itself. Thus if A E K2(R) C St(R), one can form ì00  . Aî by replacing
each zij(a) in the expression for A by zij(oc  . a) (cf. Exercise 2.1.7) and
regard it also as an element of K2 (R). Show that ACEI  (co. A) is conjugate to
(co. A), hence that A represents the identity in K2 (R)  . (Compare Example
1.2.6 and Exercise 2.1.7.)

3. Milnorís K2
In the last section, we defined Kz(R) both in terms of the Steinberg group
and in terms of homology of E(R). We also showed how to construct
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elements of Kz(R) (when R is commutative) using Steinberg symbols. In
this section, we show how K2 fits into the general framework of algebraic K-
theory, via an exact sequence linking it with K1 and Ko and via a number
of applications. The functor Kz is unfortunately difficult to compute, but
we deduce some information about it at least when R is a field.

4.3.1. Theorem. Let R be a ring and I G R an ideal. Then there is a
natural exact sequence

Ië&(R)  -3 Kz(RII> % Kl(R, I) + Xl(R) * Kl(RII)

2 Ko(R, I) -+ Ko(R)  2 Ko(R/I),

where q+ is induced by the quotient map q : R + R/I, extending the exact
sequence of Theorem 2.5.4 to the left.

Proof. We need to define the map Kz(R/I)  5 K1 (R, I) and to verify
exactness at K1 (R, I) and at Kz(R/I).  We have a commutative diagram
with exact rows and columns

1

1
1 - E(R, 1) - GL(R, I)  --i Kl(R, I)  - 1

1 1 II
1 - K2(R) + St(R) = GL(R) - Kl(R) - 1

II q*l q*l q*l q*l II
1  -  K2(R/I) - St(R/I) = GL(R/I) - Kl(R/I)  --+ 1 .

The map q* : St(R) --+ St(R/I) is surjective,  since if b E R/I is q(u) for
a E R, then q*(zij(a)) = zij(  )C!J , and thus every generator of St(R/I) is in
the image of q*. Therefore we can define 8 by the usual ìsnakeî process:
if 2 E Kz(R/I), write 2 = q*(y)  for some y E St(R), chosen by lifting
each zij (h) appearing in an expression for 2 to zij (a), where a E q-l (tL).
Then CPR(Y) E E(R) and maps to 1 in GL(R/I)  (by commutativity of
the diagram and exactness of the bottom line). So cp~(y) E GL(R, I)
and we define a(z) to be its class in GL(R, I)/E(R,  I) E Kl(R, I). To
show this is well defined, suppose 2 = ziljl (iL1).  . . xi,.j, (&) and let y =
Gljl (al) . . . Xi,.j,.  (a,) and y’ = 2iIjI  (Ui) . . . Xipj,  (a:), where & = q(ak)  =
q(ui). We need to show that cp~(y)  and cp~(y)  differ by an element of
E(R, I), hence have the same class in K1 (R, I). Let bk = u; - uk E I.
Then

cp~(Y) = ei,j,(d .**ei,j,(G)
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and

cpn(Yí)  = ei,j, (ai) . . .%j,(d.) =eiljl(bi)ei,j,(al)...ei,j,(b,)eipj,(a,)

= ei,j,(h)  (ei,j,(Q)ei,j,@z)  (ei,j,(al))-l)

X (ei,j,(al)ei,j,(az)ei,j,(b2)  (ei,j,(az))-' (ei,j,(a,))-l)

. . . CpdY),

so cp~(Y)  and cp~(Y)  differ by an element of the normal subgroup of E(R)
generated by the eij(b),  b E I, i.e., by an element of E(R, I). Thus d :
K2 (R/I) + K1 (R, I) is well defined.

Now we check exactness. The composite

Kz(R) 3 Ks(R/I)  -% Ki(R,  1)

is trivial, since if Y E Ks(R) and 2 = q*(y),  then cpn(y) = 1 and thus
a(x) = [%-X(Y)1  . t1s rivial. Conversely, if a(z) = 1, this means we can choose
y E St(R) such that 2 = q*(y) E Kz(R/I)  and cp~(y) E E(R, I), i.e.,
cpn(y)  is a product of terms of the form

(eiljl(ul)eilji(u2)... %.jp(G))eij@)  (eiljl(al)eiljl(U2).. .eipj,(G>)-l.

Changing y if necessary by an element of Ks (R) , this means we can assume
y is a product of terms of the form

(%I jl(al)Gljl(a2)*  ' * G,j,(%>>  Xij(b>(Xiljl(Ul)Xiljl(U2).  ' *Xi,j,(G))-' 7

b E I. As we saw above, we are free to replace xij(b) by xij(O) = 1,
which then shows y can be made trivial after modification by an element
of Ks(R).  So ker(8) C im(q,).

It remains to check exactness at Ki (R, I). The composite

is 1, since if x E Kz(R/I)  and we choose y E Ks(R)  with x = q*(y)
as above, then cp~(y)  E E(R) and maps to 1 in Ki(R) = GL(R)/E(R).
Conversely, if g E GL(R, 1) and the image [g] of g in Ki(R,  I) maps to
1 in Kr(R), this means g E E(R). So g = cp~(y)  for some y E St(R). If
x = q*(y) E St(R/I), then (PR/I(x)  = q*(g), which is 1 since g E GL(R,  I).
So x E ker(cpR,I)  = Kz(R/I),  and a(x) = [g] by construction. Cl

So far, we have not been able to compute K2 in very many examples,
though at least weíve produced examples of rings where it is or is not
trivial (Example 4.2.13 and Exercise 4.2.24). Our aim next is to study
Ks in the case of a (commutative) field. Unlike KI and KO which are not
particularly interesting for fields, this is a decidedly non-trivial subject with
a lot of applications. However, following ideas in [Keune], Theorem 4.3.1
now gives a way to relate the calculation of Ks of a field to a problem about
K1,  which can be studied using the theory of relative Mennicke symbols
from Theorem 2.5.12.
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4.3.2. Lemma. It F is a field, there is a natural epimorphism d :
K2(F) + SKl(F[tl,  (t2 -t)).

Proof. Let R = F[t], which is a PID, and let I = (t2 - t) s R. Then
R/I = F[t]/(t2  - t) ” F x F, with the quotient map q : R + F x F
corresponding to evaluation at 0 and at 1. By Corollary 2.3.3, Kl(R) = FX,
and the map

q* : K1(R) + K1(R/I) = K1(F x F) 2 FX x FX

is obviously the diagonal map, which is injective.  Furthermore, since the
map R + F corresponding to evaluation at 0 is split surjective via the
inclusion of constant polynomials, we get a splitting K2(R) g Kz(F) x
NKz(F) as in Theorem 3.2.22. The map

q* : K2(R) --)  K2(R/I)  = K2(F x F) g K2(F) x K2(F)

is obviously the diagonal injection on the K2(F) factor, so the cokernel is a
quotient of Kz(F).  Then d gives an isomorphism of this quotient of KS(F)
onto K1 (R, I) = SK1 (R, I) (since any unit in F[t]  is actually a unit in F,
and thus canít be 3 1 mod I unless it is equal to 1). 0

In fact, one can show that Kz(R) % K2(F), and d is an isomorphism
of KS(F) onto SKl(F[t], (t2 -t)). This makes the calculation of K2(F)
essentially equivalent to the calculation of the relations among the relative
Mennicke symbols from Theorem 2.5.12. (See Proposition 4.4.2 below.)

The key to getting more information is the following theorem, which can
be proved either using calculations in the Steinberg group (for a proof along
these lines, see [Milnor, $91) or else using homology, as in [Hutchinson], on
which the following proof is based.

4.3.3. Theorem. If F is a field, then Kz(F)  is generated by Steinberg
symbols.

Proof. Recall that in the case of a field, E(n, F) = SL(n, F) (Propo-
sition 2.2.2). By Definition 4.2.12 and Exercise 4.2.21, the subgroup of
KS(F) generated by the Steinberg symbols is precisely the image of the
corestriction map H2(FX x FX, Z) + H2(SL(F),  Z), where FX x FX q

SL(3,  F) -+ SL(F) via (a, b) H (i i a_!b_i).  W e  willshow t h a t

except in the case of a few finite fields of small cardinality, the corestriction
maps

I&(FX  x FX, Z) ---)  &(SW, FL z) + I&(%(4,  F), z) --f  ...

are all surjective; in fact Hz(SL(n,  F), Z) -+ H2(SL(n  + 1, F), Z) is an
isomorphism for n 2 3. Since Kz(F) = 15II2(SL(n,  F), Z) (Exercise
4.1.29), this will prove the theorem and a bit more. We split the proof into
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several steps; the Theorem is obtained by combining Propositions 4.3.6 and
4.3.11 and Theorem 4.3.12. The first Lemma involves some of the same
ideas as Theorem 4.1.20. It (and similar results) is actually most easily
proved using the theory of spectral sequences, but we give a direct proof,
at least for the case we need. Cl

4.3.4. Lemma. Let G = N K H be the semidirect product of a normal
subgroup N by a group H, and let M be a G-module. If H,(H, H,(N, M))
= 0 for all p and q with p + q = j, then Hj(G, M) = 0.

Proof. This is clear if j = 0, since

H,,(H, Ho(N, M)) = (M/{n, - 1: 72 E N})/{h, - 1 : h E H}

= M/{g, - 1 : g E G} = Ho(G,  M).

The general case is reduced to this case by induction on j, using resolutions.
For example, we do the cases j = 1 and j = 2, which we will need below.
Start by choosing an exact sequence of G-modules

0 + Ml -+ F0 + M -+ 0,

with Fo free, and note that Fo is free not just as a G-module but also as
an N-module. The corresponding exact sequences in N-homology and in
G-homology give

Hj+l(N, M) = Hj(N, MI), Hj+l(G, M) g Hj(G,  Ml), j 2 1,

as well as the exact sequences

0 + Hr(N, M) --) Ho(N, MI) * Ho(N, Fo) + Ho(N, M) --f 0,

0 -+ H1(G, M) + H,,(G, MI) -+ Ho(G,  Fo) + Ho(G,  M) -+ 0.

Split the first of these into two exact sequences

0 -+ H1(N,  M) + Ho(N, MI) --+ K + 0,

0 + K -+ Ho(N, Fo) + Ho(N, M) + 0.

Applying H-homology and assuming that Ho(H,  HI (N, M)) = 0 and
H1(H, Ho(N, M)) = 0, we see that

Ho(G,  MI) = Ho(H,  Ho(N,  MI)) g Ho(H,  K)

and that there is a short exact sequence

0 + Ho(H,  K) --+ [Ho(G,  Fo) g Ho(H,  Ho(N, Fo))l
+ [Ho(G,  M) g Ho(H,  Ho(N, M))] -+ 0.

Comparing this with the exact sequence in G-homology, we see that HI (G,
M) = 0. Also, replacing M by Ml lowers j by 1 and enables us to repeat
the same trick, thus proving the Lemma by induction. 0
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4.3.5. Lemma. If F is a field, T g FX x FX is the group of diagonal
matrices in GL(2, F), and B g T K F is the group of upper-triangular
matrices in GL(2, F), then if F is infinite, the corestriction map

coming from the inclusion of the diagonal matrices is an isomorphism. For
finite F, this map is still an isomorphism in degrees 1 and 2 if F has more
than 2 elements.

Proof. Note that B 2 FX x Aff(F), where the first factor corresponds
to the scalar matrices, and the second factor, the affine  group or ìaz  + b

groupî of F, is the group of matrices of the form
( )

E t . The group B

acts transitively on the set F by letting the scalar matrices act trivially and
letting Aff(F)  act by afhne  transformations. The stabilizer of the point 0
for this action is just the subgroup T. Consider the short exact sequence
of B-modules

where ZF denotes the free abelian  group on the set F, with B-action
coming from the B-action on the set F, cx sends each point of F to 1 E Z,
and M = kercu.  Since B acts transitively on F with T as one of the
stability groups, ZF 2 ZB 63.~~  Z as a B-module, and by Corollary 4.1.12,
H.(B, ZF) ” H.(T, Z). By the remarks in Definition 4.1.21, the map
(Y* can be identified with the corestriction map in the Lemma. So the
Lemma will follow from the exact sequence of Proposition 4.1.9 if we can
show that H.(B, M) = 0. For this we apply Lemma 4.3.4, so we need
to show H.(T, H. (F, M)) = 0. Since H,(F, ZF) = 0 for q > 0 a n d
Ho(F,  ZF) + Ho(F,  Z) is an isomorphism, H,(F, M) 2 H,+l(F, Z). For
instance, Ho(F,  M) g F (and this isomorphism respects the T-module
structure). If F has more than 2 elements, then there is some a # 1 in Fx ,
and a - 1 is invertible in F. So F/(a - l)F = 0 and Ho(T, Ho(F,  M)) =

0. Similarly, since T is abelian,  E y
( >

must act by the identity on

all homology groups H,(T, Ho(F,  M)), whereas a - 1 is invertible, and
thus the homology groups are all 0. When F is infinite, the fact that
B,(T, B,(F, M)) = 0 for all q can be derived from this; for instance, if
F has characteristic 0, F is torsion-free as an abelian  group, and thus
H,(F, M) ?E H,+l(F,  Z) 2 Aî+l(F)  by Exercises 4.1.29 and 4.1.31, and
a similar argument applies, since a E FX c Aff (F) acts on /\ë+l  (F) by
aq+’  but must act on homology by the identity. As pointed out by Suslin
[SuslinLNM],  a slightly different argument is required in the case F is of
positive characteristic p. In this case F is a vector space over lFp and
itís enough to show that H,(T, H,(F, IF,)) = 0 for all q > 0. In this
case, it turns out that H,(F, lFp)  2 S(F) @ l\(F) (F viewed as a vector
space over lFr,, the generators of the exterior algebra having degree 1 and
those of the symmetric algebra having degree 2) if p # 2 and H,(F, F,) ZE!
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S(F) (with generators in degree 1) if p = 2. (See also (2) of Exercise
4.1.32.) If F is infinite, one can still prove vanishing of the cohomology
by the same sort of argument as before. If F is finite with more than 2
elements, we still have vanishing of Hc(B, M) and of H, (T, He  (F, M))
for all s. Since the quotient map B -+ T induces a left inverse to the
corestriction map, we only need to show vanishing of He(T,  Hi (F, M)) or
of Ho(FX,  Hz(F, Z)) = Ho(FX,  A2(F))  to get an isomorphism through
degree 2. Now a E FX acts on A2(F)  by multiplication by u2, so vanishing
of Ho(FX,  Hs(F, Z)) when F has at least 4 elements follows from the fact
that there is an element a E FX with a2 - 1 invertible. And when F has 3
elements, Hs(F, Z) = 0 so the vanishing is automatic. 0

4.3.6. Proposition. If F is any field, the corestriction map

H2(FX x  FX, 25) --+  H2(G-W,  F),  z>

coming from the inclusion of the diagonal matrices is surjective.

Proof. We consider the action of G = GL(2,  F) on X = PI(F)  =
F u {m}  by linear fractional transformations. (This may be defined by
letting G act linearly on F2 and taking the induced action on P1(F) =
(F2 A ((0, 0))) /FX.)  Note that G acts transitively on points of X, on
ordered pairs of distinct points, and on ordered triples of distinct points.
(When F = F2, X has exactly 3 points and G may be identified with the
symmetric group of this set.) Let C, be the free abelian  group on ordered
(n + 1)-tuples (20, . . . , 2,) of distinct points of X, which is a G-module
via the G-action on X. Define E : Co ---) Z by sending each x E X to 1 and
define d, : C,+I + C, by

n+l

dn(xo,  . . . , 2,) = X(x0, . . . , ?k, . . . , G).
k=O

Note that d, o d,+l = 0 and E o dl = 0, so that (C., d) 5 Z -+ 0 is a
chain complex. If F is infinite, this augmented complex C. 5 % + 0 is
algebraically the same as the augmented ordered simplicial chain complex
of an infinite simplex, which is well known to be acyclic. (Or one can easily
check this directly, see [Hutchinson, Lemma 11:  let z E ker d,_l  . Then z is
a finite sum of terms (x,ì,  . . . , xk) and we can choose x distinct from those
x!ës  which appear. If y is obtained from z by replacing each (x,ì,  . . . , zk) by

(2,x$, . ..) xk), then d,+ly = z.) If F is finite, the complex is still exact
at Ce and Ci, and exact at CZ if F has at least 3 elements. (However,
the Proposition is true for F = lF2 anyway since in this case G g Ss and
H2(G,  Z) = 0 by Corollary 4.1.24 and Exercise 4.1.25.)

So assume F has at least 3 elements and look at the long exact homology
sequences of the short exact sequences

(4.3.7) o+M~ëc~4,z+o,
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(4.3.8) O-MI+C++M~+O,

(4.3.9) 0+M2+C2%Ml+0.

Let B be the upper-triangular subgroup of G, T the diagonal subgroup,
and 2 the center (scalar matrices). Since G is triply transitive on X, and
B stabilizes 00, T stabilizes (00, 0), and 2 stabilizes (00, 0, l), we may
identify the G-modules Cc with ZG@ z~ Z, Cr with ZG @zT Z, and Cz with
ZG@zZ. Thus, by Corollary 4.1.12 and the comments in Definition 4.1.21,
we may identify H.(G, Co)  with H.(B, Z), the map E* with corestriction

H.(R z) z H.(G, Z), H.(G, Cl) with H.(T, Z) 2 H.(FX x FX, Z),
and H.(G, C2)  with H.(Z, Z) 2 H.(FX , Z). Since do : Cr + CO sends

(co, 0) H (0) - (co) = w-l. (co)  - (co), w =

we see that

H.(G, Cl) E H.(T z) % H.(B, Z) 2 H.(G,  Co)

is z H cores(w . z - z). Similarly, dr : Cís  -+ Cr sends

(00, 0, 1) ++ (09 1) - ( ~,~)+(~,~)=~1~~~,~~-~2~~~,~~+~~,~~

for suitable gr, gz E G, so

H.(G,  C2)  g W-T  Z) -f%  H.(T, Z) 2 H.(G,  C,)

is z H cores(g,l . z - Q2-’  . z + z), which since 2 is central is just

cores - cores + cores = cores.

After making these substitutions, we obtain from (4.3.7) and (4.3.8) the
exact sequences

(4.3.7í) ... + Hj+l(G, Z) 3 Hj(G,  MO) + HJB,  Z)

D H~(G,  z) 3 H+~(G,  Mu) +. . .

and

(4.3.8í) . . . + &+l(G MO) -% HJG, MI) + Hj(T,  Z)

% HJG, MO)  -% H&G,  MI) + . . . .

By Lemma 4.3.5, the corestriction map Hz(T,  Z) x H2(B, Z) is an
isomorphism. So we only need to show H2(B,  Z) D H2(G, Z) is sur-
jective, which by the exact sequence (4.3.7í) means we need to show that
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a : fh(G, MO) -+ H~(B,  Z) in (4.3.7í) is injective. The image of this
map is

ker
(
Hr(J3, Z) 5 Hr(G, Z)) = ker (T % Gab = FX) 2 FX.

From (4.3.7í) and the facts that Hr(B, Z) z Hl(G, Z> is surjective
and Ho(B, Z) = Ho(G,  Z) is an isomorphism, He(G,  Me) = 0. From
(4.3.8í),  we have the exact sequence

From (4.3.9),  we have the exact sequence

(4.3.9í) HI(Z,  Z) + Hr(G, M) 5 Ho(G,  M2)

+ Ho(Z, Z) z Z 2 &(G, MI) + 0.

Thus Hc(G, MI) is cyclic, and since by (4.3.8í),

He(G,  MI) + H,,(T,  Z) 2 Z

is surjective, this latter map must be an isomorphism. Thus iYl(T, Z) %

T % H1(G,  MO) is sujective.  Since the composite

p 0 dl, : Hl(Z, Z) ?f {(; i):a~F~}

-+H1(T,Z)= :a,bEFX

is the corestriction map, which is inclusion of the scalar matrices, imp

contains the scalar matrices, and T % Hl(G, MO) kills the scalar ma-
trices. Since we already concluded that de* is surjective and that imcr =
2’ n SL(2,  F), this means LY must be injective. q

4.3.10. Lemma. If F is any field, there is a natural splitting

H2(GL(n,  F) ,  Z) s H2(SL(n,  F), Z) @ H2(FX,  Z)

for n 2 3. If F has at least 4 elements, there is an analogous fact for n = 2:

H2(GL(2,  F), Z) 2 fJo(FX,  H2(SW,  F), Z)) @ H2(FX,  z),

and the corestriction map of Proposition 4.3.6 maps onto the first factor in
this decomposition.

Proof. For any n, GL(n,  F) is the semidirect product of the scalar ma-
trices, isomorphic to FX , and of the normal subgroup SL(n, F). So the
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inclusion of the scalar matrices, together with the determinant map, gives a
split copy of Hz (Fx , Z) inside Hs(GL(n, F), Z). Also, we know SL(n, F)
is perfect for n > 3, and this also holds for n = 2 if F has at least 4 elements,
by Exercise 4.1.28(l). Since the composite SL(n, F) w GL(n, F) 2 FX
is trivial, the corestriction map

ff2(Wn,  FL z) + ff2(G~Yn,  F), z)

has its image contained in the complement of the split copy of Hs(FX , Z).
It in fact surjects onto this complement, and gives an isomorphism of the
complement with Ho(FX, H2(SL(n, F), Z)), by an argument similar to
that in Lemma 4.3.4, since H1(FX, H1(SL(n, F), Z)) = 0. (This is where
we use the fact that SL(n, F) is perfect.)

To conclude the proof, we need to show that FX acts trivially on

H2(=(n, F), z>

for n 2 3. The case n = 2 follows from the next Proposition, since it will
turn out that the corestriction map

H2(GW,  FL z) + ff2(SW~, F), z)

induced by A L) is surjective. Since matrices of the

form give another complement to SL(3, F) inside

GL(3, F) which commutes with matrices of the form

A E GL(2, F), the conjugation action of FX on Hs has to be trivial. The
case of larger n will then follow from the Stability Theorem (Theorem
4.3.12). 0

4.3.11. Proposition. If F is a field with more than 7 elements, then the
corestriction map

fb(GW, F), z) --t WSW F), z)

induced by A L)
A 0
0 (det A)-l

is surjective, and Hs(SL(3,  F), Z) is

generated by Steinberg  &mb&. if F has more than 3 elements, the core-
striction map is still surjective except perhaps for p-torsion, p the charac-
teristic of the field.

Proof. The general idea is similar to that of Proposition 4.3.6. Consider
the action of G = SL(3, F) on X = P2 (F), the set of one-dimensional
subspaces of F3. Again let C, be the free abelian  group on ordered (n + l)-
tuples (~0,  . . . , x,) of distinct points of X, but with the extra condition
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that if n 2 2, no three xjís  are colinear.  This is a G-module via the G-action
on X. Define E : Co --+ Z and d, : C,+l + C,, getting an augmented chain
complex as in the proof of Proposition 4.3.6. If F is infinite, this augmented
complex C. -% Z -+ 0 is acyclic by almost the same proof as before. If F is
finite, the complex is still exact at 6í0  and Ci. Note that G acts transitively
on X, with the stability group at [es] (er, es, ea the usual basis vectors for
F3)

: A E GL(2, F), Y E F2 ,

transitively on ordered pairs of distinct points in X, with the stability group
at (k21,  b31)

I(

a1 0 0
PI= YI a2 0 :~I,~~EF~,YI,Y~EF  ,

Y2 0 kw2r1 1 1

and transitively on ordered generic triples of distinct points in X, with the
stability PUP at ([el, [et], [es])

We proceed as in the proof of Proposition 4.3.6, using short exact se-
quences of the form (4.3.7-4.3.9) and the corresponding long exact se-
quences in homology. The substitutes for (4.3.7í-4.3.9í)  in our context
are as follows:

(4.3.7î) ... + L$+i(G,  Z) -% HJG, A&,) ---f Hj(P,  Z)

= Hj(G,  Z) 2 Hj_l(G,  MO) -+ ... ,

and

(4.39í) H1(FX  x  FX, Z) -+ HI(G, MI) 3 Ho(G, M2)

+ Ho(FX x FX, Z) Z il-%  Hi,(G,  A&) + 0.

We also compute do* and dl, as in the proof of Proposition 4.3.6. Since
do : Ci + Co sends

1 0 0
(k21, k31) ++ k31 - k21 = [e31 - we1 . k31, w = ( 0 0 1 ) )

0 - 1 0
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we see that

H.(G,  C,) = H.(Pl, z) % H.(P,  Z) = H.(G,  Co)

is z H cores(w . z - z). Similarly, dr : CZ + Cl sends

&I, [e21,  [e31)  ++ (k21, k31)  - (My k31) + (hL MI
= ([ez],  [e31)  + 91 . ([e21,  [e31>  - 92 . (k21, k31)

with

H.(G, C2) ” H.(FX x FX, Z) ++ H.(Pl, Z) s H.(G,  Cl)

is z H cores(g,l  . z - 92-l . z + z).

The proof is then exactly the same as that of Proposition 4.3.6, with the
following exceptions:

(1)

(2)

Since G is perfect, Hr(G, Z) = 0. Assuming F has at least 4
elements, SL(2, F) is also perfect, so Hr(P, Z) g FX. One also
has Hr(Pr, Z) = FX x FX.
The idea of the proof will be to show that

&(P, Z) = H2(G, Z)

is surjective, by using (4.3.7î) and showing that

cx : H1(G,  MO)  --)  H1(P,  Z) Z FX

is injective  (o is automatically surjective since Hr (G, Z) = 0). So
one needs to know as well that

ff2(H,  Z) = H2(P, Z)

is surjective, where

: A E GL(2, F) ” GL(2, F).

Since P = H K F2, we need an analogue of Lemma 4.3.5. This is
proved with the same technique, the only difference being that the
action of GL(2, F) on F2 is by A$ = (det A)At. So a scalar matrix

a 0

( >0 a
acts by multiplication by a3 instead of by multiplication

by a as in the proof of Lemma 4.3.5. This is no problem as long as
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(FX ( does not divide 6, in particular, if F has at least 8 elements.
For a smaller finite field of characteristic p, itís still true that

is an isomorphism, since H.(F2, Z[ i]) vanishes except in degree 0
(by Theorem 4.1.23).

(3) In the last step of the proof, one has to examine the composite

po (&), : H1(FX x FX, z) +Hl(Pl,  z).

This time, this is not the corestriction map (which is an isomor-
phism) but rather the map z H cores(g;’  . 2 - Q2-l . z + 2). If
we identify the HI groups with groups of diagonal matrices, this
becomes the map

On the other hand, the map (do)* : Hl(fíl,  Z) -+ Hl(Jí,  z> be-
comes the map

(i % (ab;_l) ++ (; 8 (abi-l) (i (a!-’ y’
= (s ai ._%,)7

whose kernel is precisely the image of the previous map. So a is
again an isomorphism as in the proof of Proposition 4.3.6.

The fact that Hs(SL(3, F), Z) is generated by Steinberg symbols now fol-
lows from combining this result with Proposition 4.3.6. 0

4.3.12. Theorem (Stability for K2). If F is a field, the corestriction
maps Hz(WW F), z) + H,(SL(n  + 1, F), Z) and Hz(GL(n, F), Z) --+
Hz(GA(n+l,  F), z) are isomorphisms for n > 3 if F is infinite, and are at
least surjective  after inverting the characteristic of the field if F is finite.
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Hence (for an infinite field) Kz (F) ?z! Hs(SL(3, F), Z) and is generated by
Steinberg symbols.

Proof. Because of Lemma 4.3.10 and the fact that the split copy of
Hz (FX , Z) in Hz (GL(n, F), Z) clearly maps to the corresponding copy in
Hz(GL(n + 1, F), Z), while Ho(FX, H2(SL(n, F), Z)) maps to

Ho(FX, Hz(Wn + I, F), z)),

it is enough to treat the case of GL(n). The proof of surjectivity, or of
surjectivity after inverting the characteristic of the field if F is finite, is
virtually identical to the proof of Proposition 4.3.11, except that we use
the action of GL(n + 1, F) on X = Bî(F), the set of one-dimensional sub-
spaces of Fn+ë. (Inverting the characteristic trivially yields the analogue
of Lemma 4.3.5, that the corestriction map

H.(GL(n,  F), +I) -+ H.(GL(n,  F) K Fn, d])
is an isomorphism, since Fn is a pgroup and thus its homology with coef-
ficients in Z[i] vanishes by Corollary 4.1.24. For an infinite field, the old
proof still works.) Note incidentally that surjectivity of the corestriction
map Hz(SL(3, F), z) 4 H2 (SL(n + 1, F), Z) implies because of Proposi-
tion 4.3.11 that the latter is generated by Steinberg symbols.

The proof of injectivity  is only slightly more delicate. For this part of
the argument, assume F is infinite, let G = GL(n + 1, F), and let Ck be
the free abelian  group on ordered (Ic + 1)-tuples (~0,  . . . , zk) of distinct
points of X = pn(F),  bu with the extra conditions that if lc 2 2, no threet
xjís  are colinear,  if Ic > 3, no four zjís  are coplanar, etc. This yields an
augmented complex C. 5 Z + 0 which is acyclic by almost the same
proof as before. As in the proof of Proposition 4.3.11, let P = PO be
the stabilizer of [e,+i],  PI the stabilizer of ([e,], [e,+i]), Ps the stabilizer
of ([en-11,  [em],  [e,+il), etc. T h e n  CO 2 ZG @zp Z, Cl E ZG @zpl  Z,
C2 E ZG @zq Z, Cs 2 ZG mzp3  Z, Cd % ZG &p, Z. By Corollary 4.1.12
(Shapiroís Lemma), H. (G, Cj) g H. (Pj, Z) for j 5 4, and by the analogue
of Lemma 4.3.5, the corestriction maps

H.(GL(n, F) x FX, Z) + H.(P, Z>,

H.(GL(n  - 1, F) x FX x FX, Z) ---)  H.(Pl, Z),

H.(GL(n - 2, F) x FX x FX x FX, Z) + H.(P2, Z), etc.

are isomorphisms. So H2(P, Z) z Hz(GL(n, F), Z)@(F’ @FX)@A2(FX).
We again use the exact sequences (4.3.7î-4.3.9î))  so we need to show the
image of H2(G, MO) -+ Hz(P, Z) does not meet the copy of Hz(GL(n,  F), Z)
in the latter.

Now the composite

K(P2, Z> + fL(G,  MI) 4 H.(Pl,  z)
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induced by dl is given by z H cores(g,i  . z - ggl . z + Z) and the composite

H.(Pi, Z) + H.(G, MO)  -+ H.(F, z)

induced by do is given by z w cores(w  . z - z), as in the last proof. A
long diagram chase then shows that the map Hi(P2, Z) + Hr(G, Mi) is
surjective and that the map He(G,  Ms) -+ He(Ps,  Z) 2 Z is an isomor-
phism, hence that the map Hi(Ps, Z) -+ Hi(G, Mz) is surjective. So the
kernel of the map Hi(Pz, Z) + Hl(G,  MI), which by the exact sequence
(4.3.9î) is the image of the map Hl(G,  M2) --+ Hl(P2,  Z), is also the im-
age of the map Hl(P3,  Z) + HI (Pz, Z). A calculation shows that this
coincides with the kernel of the map Hl(Pz, Z) -+ Hl(Pl, Z). So the map
Hz(G, MO) -+ Hl(G,  Ml) must be zero and Hz(9,  Z) -+ Hz(G, MO) is
surjective. Finally, the image of the map

Hz(G, MO) -+ H2(p,  Z>

in the exact sequence (4.3.7î) is the same as the image of (do), : Hz(Pi, Z)
+ Hz(P,  Z). Prom the description of (do), as coreso(w, - l), this has
trivial intersection with the copy of Hs(GL(n, F), Z) in the latter, which
proves what we wanted. Cl

4.3.13. Corollary. If F is a finite field (with the possible exception of
Pz),  then X2(F) = 0.

Proof. By Corollary 4.2.18, all Steinberg symbols vanish, yet Kz(F)[$]
(where p is the characteristic of F) is generated by Steinberg symbols
by Theorem 4.3.3. On the other hand, for any n >_ 3, SL(n, F) is a
finite group, so Hz(SL(n,  F),Z) is a finite abelian  group by Theorem
4.1.23, whose pprimary part comes from the Sylow psubgroup by Corol-
lary 4.1.24. Now if the order of F is q = pr, the order of SL(n, F) is

(qn  - l)(qn - q). . . (qn  - qn-2)qn-l  = q1+2+...+(n-l)(qn  - 1). . . (q2 - I),

so the largest power of p dividing this is q1+2+ìë+(n-1),  which is the order
of the subgroup N(n,  F) of upper-triangular matrices with lís down the
diagonal. Thus N(n,  F) is a Sylow p-subgroup of SL(n, F). However, by
Lemma 4.2.3, there is a homomorphism N(n,  F) --)  St(n, F) which splits
the canonical map ëp : St(n, F) + SL(n, F) over N(n,  F). This shows
that the central extension cp : St(F) -+ SL(F) is trivial over N(F) =
l%N(n,  F), and thus that the pprimary part of Kz(F) vanishes. 0

4.3.14.  Remark. In fact there are no exceptional cases; Kz(F) vanishes
for any finite field. To prove this for F = lF2, one can merely note that
Hz(SL(3,  F), z) is a finite abelian  2-group (see Exercise 4.1.28(5)),  and
then use Theorem 4.3.12 to deduce that Kz(F)  is a 2-group. The argument
in the proof of Corollary 4.3.13 then shows that Kg(F)  has to vanish.

With somewhat more work, Proposition 4.3.6, Proposition 4.3.11, and
Theorem 4.3.12 can be turned into a proof of the following famous (and
difficult) theorem of Matsumoto.
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4.3.15. Theorem (Matsumoto). IfF  is any (commutative) field, Kz(F)
is the free (multiplicative) abelian  group Symb(F) on generators {u, w},
u, v E FX, subject to the relations of bilinearity  in both variables and the
relation (21, 1 - u} = 1.

Proof [Hutchinson]. First of all, the given relations imply the other rela-
tions we know about, namely skew-symmetry ({u, V} = {v, u}-ë)  and the
relation {u, -u} = 1, since

-u = (1 - u)(l - u-1)--1,

hence

{u, -u} = (ë11,  1 - u}{u,  1 - u-1)--1 = {u-l, I- u-1) = ]

and

{u, w} = {u, w}{u,  -u} = {u, -UW}

= uv?F1,1 -uw} = {uv, -uv}{w-l,  -uw}
= {w, -uw}-1 = {w, u}-l{v, -v}-1
= {w, u}-ë.

Next, because of Corollary 4.2.18, Corollary 4.3.13, and Remark 4.3.14,
the csse where F is finite is already proved. So itís enough to show that
when F is infinite, Ho(F x, Hz(GL(2, F), Z)) has the indicated presenta-
tion, and that corestriction maps this isomorphically onto Hz(GL(3, F),
Z). By Lemma 4.3.10, itís enough for the second statement to show that
the corestriction map Hz(GL(2, F), Z) -+ Hz(GL(3, F), Z) is injective.

We begin with the first, step, the identification of Hz(G, Z), G = GL(2,
F), with the direct sum of /j2(Fx) and the group Symb(F) on symbols
{u, v}, u, w E FX satisfying the indicated relations. For this we have to
go back to the exact sequence (4.3.7í) in the proof of Proposition 4.3.6 and
identify the image of the map H2(G, MO) + H2(B,  Z) g A2(Fx x FX).
We also need to use the short exact sequences

(4.3.16) 0 -+ Ms --+ Cís  ++ M2 + 0,

(4.3.17) 0+M4+C4%M3-$0,

and the corresponding exact sequences (4.3.16í) and (4.3.17í) in homology,
in addition to (4.3.7-4.3.9). Since the orbits of G on 4-tuples and 5-tuples
of distinct points in P1 (F) all have stablizer 2 g FX , one finds that

H.(G,  C3) 2 @ fL(FX, Z>. ix),

z#O,  1, m



3. Milnorís KZ 215

fL(G,  (74) 2 @ fL(FX,  Z) . (21, x2),

~l#~z,q#O,b~

and computing (dz), and (da)* as in the proof of Proposition 4.3.6 yields
that

(&)a  : H.(G, G) --+ fL(G,  C2) = fJ.(z, z)

is the O-map and that

(d3)+  :H.(G,  C4) --+ H.(G, C3) : *. {21, z2)

Since Ho(G,  Cd) + Ho(G,  Ma) is surjective,  the cokernel Ho(G, Mz)  of
the map Ho(G, M3) + Ho(G,  C3) is the same as that of the map (da)*  :
H,(G, C4) + Ho(G, C3), i.e., Ho(G,  A&) is the free abelian  group P(F)
on generators {x}, 2 E F \ (0, l}, subject to the relations that for ~1 # 22,

Furthermore, since (dr), coincides with the corestriction map H.(Z,  Z)
--+ H.(T,  Z), which is a split injection, a simple diagram chase yields split
short exact sequences

0 + FX + &(G, MI) -+ Ho(G,  M2)  = Ií(F)  --+ 0,

0 -+ jl(Fî)  + H2(G,  W) ---f Hr(G, M2)  + 0.

We also know that the map (do)* : H2(T, Z) --)  H2(B, Z) 7 H2(T, Z)

is given by coreso(1  - w*),  so when we identify H2(T, Z) with Aî(T),
the cokernel of (do * can be computed to be AS2(FX)  CB A2(FX).  (Here)
AS2(FX)  denotes the second antisymmetric tensor power, i.e., (FX 8
FX)I(~@~+~@4.)

Now consider the commutative diagram with exact rows and columns

ffl(G, M2) H2(B, Z) ffo(G, M2)

Chasing the diagram, we see that the cokernel of the map H2(G, Me)  +
H2(B,  Z), which is H2(G, Z), is the direct sum of /j2(Fx),  corresponding
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to the split copy of FX in G, and the cokernel of a certain map P(F) -+
AS2 (F x ). Disentangling the various identifications made (see [Hutchinson,
pp. 188-1901)  hs ows that this map sends {z} E P(F) to (1 - z-ë)  A 2-l.
(A denotes the antisymmetric tensor product.) Thus

Ho(FX,  H2(SL(2,  F), Z)) = AS2(FX x FX)/((l  - z)  A z : z E FX \ {l}),

which is exactly the group with generators (2, y} subject to bilinearity,
antisymmetry, and the relation (1 - z, z} = 1.

To finish the proof, itís enough to show that the corestriction map
H2(G-W,  FL z) -+ Hs(GL(3, F), Z) is an injection. The proof is quite
similar to that of the injectivity  part of Theorem 4.3.12. As in that proof we
let G = GL(3,  F) and let Cj be the free abelian  group on distinct (j + l)-
tuples of points in P2(F) such that no three are colinear  if j 2 2. However,
in this case we have P2 = (FX )” (the diagonal matrices) and we can take Ps
to be the stabilizer of ([er],  [es], [es], [er + e2 + es]), which is just the group
2 E FX of scalar matrices. The map (ds)+  : H,(P3, Z) -+ H.(P2, Z) turns
out to be the O-map since Ps is central. So the proof proceeds as before,
except that this time it turns out that the map Hl(G, M2) + Hl(P2,  Z) is

the O-map, Hl(P2, Z) 5 Hl(G,  MI) S (FX)3, and the map Hz(G, MO) +
Hl(G, MI) has image ” FX. Write Hz(P, Z) E Hz(GL(2, F) x FX, Z) as

Symb(F) @ i(Fî)  @(FX @a FX) @ i(FX)
\ , \ /

Hz(GW,  FL Z) &(FX,Z)

and Hs(Pr, Z) Z Hz((Fî)~,  Z) as /j2((Fx)3).  Then coreso(w - 1) sends

(a, b, c) A (aí, bí,  cí) H ({a, Klcí}  - {aí, b-lc},  c A cí - b A bí,

aí~~-lc-a~~bí-lcí+c~bí+bí~c

-cí@b-b@cí,bfibí-c/id  .
)

Thus the cokernel of do* : Hs(Pr  , Z) ---)  Hs(P, Z) is isomorphic to
n

Symb(F)  @ A(FX).

Going back to the commutative diagram with exact rows and columns

H2(P1,  z>

1 b*

H2(G, MO) - H2(P, z) - H2(G, Z) --% Hl(G,  MO)
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we see that Hs(G, Z) is the cokernel of a certain map FX + Symb(F) $
A” (F x ). A messy diagram chase shows that this map is actually the O-map
(in other words, the image of Hs(G, A&) in H2(P, Z) is contained in the
image of de,), so Hs(G, Z) s Symb(F) @ /j2(Fx),  as asserted. 0

4.3.18. Exercise. Show that Ks(Ri x Rs) 2 Ks(Ri)  @ K2(&) for any
two rings RI and RZ.

4.3.19. Exercise. This exercise concerns Ks(Z/(m))  when m is a positive
integer.

(1) Show from Theorem 4.3.1 and Exercise 2.5.17 that a proof that
K&z) 2 z/2 ( see Exercise 4.3.20 below) would imply that
Ks(Z/(m)) has order at most 2 for any positive integer m, and
would have to be generated by the Steinberg symbol { -1, -1).

(2) If P is an odd prime and r > 1, R = Z/(pí)  is a local ring, and the
quotient of this ring by its maximal ideal is the field F, = Z/(P).
Observe that RX is a group of order Pr-ë(P  - l), and that the
quotient map R ++ IF* induces a map RX -+ lFc which must be an
isomorphism after inverting elements of order a power of P. Thus
this map splits. Show also that RX contains an element of order
P+ë,  hence that its Sylow psubgroup is cyclic. Since lFG is cyclic
of order prime to p, deduce that RX % IF; @ Z/(pí-ë)  is cyclic.

(3) Show by an analogue of the argument in the proof of Corollary
4.2.18 that all Steinberg symbols must be trivial for R = Z/(pí),
p an odd prime.

(4) Deduce from (3))  from the Chinese Remainder Theorem, and from
Exercise 4.3.18 that all Steinberg symbols are trivial for Z/(m), m
odd. Deduce from (1) that a proof that Ks(Z) 2 Z/2 would imply
that Ks(Z/(m))  ’ t1s rivial for m odd. (It is known that { -1, -1)
is non-trivial in Ks(Z/(T)),  r > 1.)

4.3.20. Exercise. This exercise concerns Kz(Z).  A proof that Kz(Z)
g Z/2 is given in [Milnor, $101. We outline here another method of attack.

(1) Apply the same method of proof used in the proof of Theorem
4.3.12 to show that for any n 2 4, the corestriction map

H2(SL(n, -a q -+ &(SL(n + 1, Z), Z)

is surjective.  Use the action of SL(n + 1, Z) on

x = {a E zn+l : l&21+. . . + Za,+1 = ì}  /{fl}.

Identify points of X with vectors in Zn+’ (up to a sign), and let
Ck be the free abelian  group on ordered (Ic + 1)-tuples of distinct
points in X, with the extra condition that any subset consisting
of < n + 1 such vectors should be a set of rows in a matrix in
GL(n + 1, Z). The rest of the proof should be extremely similar
to that of Theorem 4.3.12.
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The same ideas apply to the cases n = 2 and n = 3; however,
things are more complicated because of the fact that SL(2, Z) is
not perfect. In fact, it is a classical fact that SL(2, Z) is generated
by the elements

s=(_4 g1 T=(J1 ;)
(this follows immediately from Theorem 2.3.2 and the relations
eis(l)  = ST-l, ezl(l) = S-lT); furthermore, this gives a presen-
tation of SL(2,  Z) as an amalgamated free product

(S, T ( S4 = T6 = 1; S2 = T3).

(The freeness is proved using the action of SL(2,  Z) on the upper-
half plane-see [SerreTrees,  p. 351.) Thus Hi (SL(2, Z), Z) is the
free abelian  group on S and T satisfying the same relations, and

so is cyclic of order 12. Examining the action of -1 0

( >0 1 On
SL(2,  Z), show that Hi(GL(2,  Z), Z) is isomorphic to (Z/2)2,  with
one of generators coming from SL(2,  Z).
Plugging the results of (2) into the argument of (l), show that
H2(SJ5(7& a z> is a finite 2-group for n = 3 or 4. (In fact, it is
(Z/2)2 in both cases, but the corestriction map

WSL(3, z), z) -+ &(SL(4,  z), z)

is not an isomorphism [vandenKallen]  .)
Deduce from (1) and (3) that KS(Z)  is, up to at worst a finite
2-group,  generated by the Steinberg symbol { -1, -1). Careful
analysis shows in fact that there is nothing else. Since we know that
this Steinberg symbol is an element of order 2 (Example 4.2.13),
Ks (Z) is of order 2.

4. Applications of IT2
In this section we discuss applications of Ks in several quite different fields.
First are the rather direct applications to Ki calculations that follow from
the long exact sequence of Theorem 4.3.1. Then we briefly introduce the
applications of Ks to number theory, which have attracted considerable
recent attention. Finally, we mention some applications of Ks in analysis
and topology.

Computing Certain Relative K1 Groups. One of the first applica-
tions of Ks follows from Corollary 4.3.13 and Remark 4.3.14. Namely, we
obtain a new proof of the following.
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4.4.1. Theorem. Let R be the ring of integers in a number field, and let
p be a non-zero prime ideal in R. Then SK1 (R, p) = 1.

Proof. We use the exact sequence of Theorem 4.3.1:

Kz(RIp) + =I(% P) + SKI(R) + SKl(R/p).

Since R/p is a finite field (see the proof of Theorem 1.4.18),  SK1 (R/p)
vanishes by Proposition 2.2.2 and Kz(R/p)  vanishes by Corollary 4.3.13
and Remark 4.3.14. So SK1 (R, p) ” SK1 (R). This vanishes by [Milnor,
Corollary 16.31. While this is a hard result, vanishing of SK1 (R) is elemen-
tary when R is a Euclidean ring (Theorem 2.3.2), so for instance we obtain
relatively elementary proofs of the vanishing of SK1 (R, p) when R = Z or
R = Z[i] or R = Z[w]. Proving this directly is not so easy even when
R = Z (the proof sketched in Exercise 2.5.17 uses Dirichletís Theorem on
primes in arithmetic progressions). 0

Similarly, we already know from Lemma 4.3.2 that when F is a field,
there is a close relationship between KZ (F) and SKI (F [t], (t2 - t)). In fact,
granted the non-trivial fact (which we havenít proved) that K2 (R) Z K2 (F)
for R = F[t],  Matsumotoís Theorem for F is basically equivalent to a proof
that there are no non-trivial relations (i.e., relations not consequences of
the relations in Theorem 2.5.12),  among the relative Mennicke symbols for
SKl(F[tl,  (t2 - t)).

4.4.2. Proposition [Keune]. The map d : K2(F) + SKI(R) of Lemma
4.3.2, where R = F[t] and I = (t2 - t), maps

{a, b} I-+ [1+ (a - 1) @$ (t2 - t) (1 + (b - 1)t)  (t2 - t) I.1
Proof. Using the notation of Lemma 4.2.15, let

a(t)  =  w12(a)212((a - 1)t)wn(-a),

/3(t) =  w21(-u-1)221((1  - a-l>qw21(a-ë)
in St(R).

Then a(O) = w~~(~)wIz(--~)  = 1 and P(0) = 2021(-a-~)w2l(a-~)  = 1. Let

y ( t )  =  cY(t)z21(u-1)P(t)~21(-~-1)~12((~  - l)%

so that y(O)  = 221(~-~)221(-u-ë)  = 1. Then

y(l) = w12(u)212(a  - qw12(-4~21(a-1)

w2l(-u-1)221(1  - u-1)w21(u-1)z21(-~-1)~12(~  - 1)

=  w12(+12(-1)~21(~-ë)212(-4~12(4

Z21(-u-l)z21(1-  u-1)~21(u-1)~12(-a)~12(u  - 1)

=  w12(u)~12(-l>~21(a-1)~21(-~-1)~21(1)~12(--1)

=  wl2(~)~12(-l)~21(1)212(-1)

=  w12(a)w2(-1)  =  hz(a).
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So ifS(t)  = [y(t), h13(b)], S(0) = [l, h(b)] = 1 and b(1) = [hl2(a),  h13@)1

= {a, b}. T h u s  a({a, b}) can be computed by tracing what happens
when we apply the ìsnakeî process in the proof of Theorem 4.3.1 to
6(t)  E St(R). Now

(PR(ë-dt)) =
(

-l~~u-l,,  y) (  u:l ;) (; -ì$-  Q)

-u (_,ë-1  y) (; (yl)t)

=
(

1+ (a - 1)t (a - l)2(t2 - t)
-(u-l - l)ì(P  - t) * >

E c&q2 R)7 >

(PR(6(t))
= ( 1 + (u - 1)t (a - 1)2(P  - t)

-(a-’ - 1)2(t2  - t) * >

( b-ë(a-’  -*l)2(t2  -t)
-b(u - 1)2(t2  - t)

1 + (u - 1)t >
= 1 - (1 - b-ë)w(t’  - t)2 (1 - b)(u - 1)2 (1 + (u - 1)t)  (t2 - t)

* * 1.

The result then follows after simplifying. 0
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Keune [Keune] used this to obtain a new proof of Matsumotoís Theorem
along the following lines:

(1) First prove that there are no non-trivial relations (i.e., relations
not consequences of the relations in Theorem 2.5.12),  among the
relative Mennicke symbols for SKi(R,  I). This is done in [Bass,
Ch. VI, 521.

(2) Then show that Kz(F)  is generated by Steinberg symbols, i.e., the
natural map + : Symb(F) + Kz(F) is surjective.  This uses only
the easier part (surjectivity)  of Theorem 4.3.12.

(3) Then construct a map p : SK1(R,  I) -+ Symb(F) using the pre-
sentations of the two groups.

(4) Check by direct calculation that &+op is the identity on generators
of SKl(R,  I), using Proposition 4.4.2.

(5) It follows that d and $ have to be injective,  proving in particular
Theorem 4.3.15.

We omit the details since we have not proved the hard fact that the relations
of Theorem 2.5.12 give a presentation for SKI(R,  I). We see also that this
fact must be of difficulty comparable to that of Matsumotoís Theorem.

K2 of Fields and Number Theory. The study of K2 of fields is in-
timately connected with certain questions in number theory. The reader
who wants to learn more about this relationship is referred to [Milnor, $11
and §14$16]  and to [Srinivas, $8 (The Mercurjev-Suslin Theorem)] for a
much deeper discussion, but we will try here to sketch at least a few basic
ideas. To motivate everything, recall that our proof (Example 4.2.13) of the
non-triviality of { -1, - 1) E Kz (R) depended on the use of the quaternions
W. In addition, as related circumstantial evidence, recall that (-1, -1) is
trivial in Kz(C) (Example 4.2.19),  and that there is no non-trivial finite-
dimensional division algebra over Cc (W @n Cc g Mz (C)) . And note as well
that we have shown that Kz(lF,)  = 1 for any finite field F,, while it is a clas-
sical fact due to Wedderburn that there are no non-commutative finite di-
vision algebras. All these facts suggest a close relationship between Kz(F)
for a field F and the existence of non-commutative finite-dimensional di-
vision algebras over F, which is measured by the Brauer  grozlp  Br(F), an
important invariant of the arithmetic of the field. We will see that group
homology makes an appearance in this subject as well.

Before getting to the quaternion and division algebras, we start with
something quite classical, and in fact closely related (see [SerreCourseArith,
Ch. III]). As a by-product of our work, we will obtain a proof of the Law
of Quadratic Reciprocity.

4.4.3. Definition. Let F be a field of characteristic # 2. The Hilbert
symbol of F is the map ( , )F : FX x FX --+ {fl} defined as follows:
ifa,b E FX, (a, b)p = 1 if there exist 2, y, z E F, not all zero, such
that z2 = ax2 + by2, and (a, b)F = -1 otherwise. It is clear that (a, b)
only depends on the images of a and b in FX/(FX)2. (Here (FX)2  is the
subgroup of FX consisting of perfect squares.) Thus the Hilbert symbol is
identically 1 if every element of F is a perfect square, for instance, if F is
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algebraically closed. It is also clear that if F = Iw, (a, b)~ = 1 if and only
if a and b are not both negative.

4.4.4. Lemma. Let F be a field of characteristic # 2, and let a, b E FX.
The Hilbert symbol (a, b)~ is 1 if and only if a lies in the image of the
norm map N : F(&)X -+ FX.

Proof. If b = c2 is a perfect square in F, then F(h) = F and N is
the identity, so the condition is always satisfied. But in this case c2 =
a. O2 + b. l2 so (a, b)F = 1. So suppose b is not a perfect square in F.
Then F(G) = {x + y& : 2, y E F} and

N (F (&) ì>  = {x2 - by2 : x, y E F, not both 0).

If a = x2 - by2,  then x2 = a. l2 + by2, so (a, b)F = 1. Conversely, if there
exist x, y, z E F, not all zero, such that .z2 = ax2+by2,  then ax2 = z2-by2.
We canít have x = 0, since then N(z+y&) = 0 and z+y& = 0 (the norm
is the product of the conjugates, so it vanishes only on the O-element), so

a =
N(z+y&)  =N

X2

Thus a lies in the image of the norm map N : F( &) ’ -+ Fx . 0

4.4.5. Proposition. Let F be a field of characteristic # 2, and suppose
that for any quadratic extension F(d) ofF, N(F(fi)X)  has indexat  most
2 in FX. Then the Hilbert symbol (a, b)F, for a, b E FX, only depends
on the Steinberg symbol {a, b} E Kz(F),  and defines a homomorphism
KS(F) -+ {*I}.

Proof. Because of Matsumotoís Theorem (4.3.15),  itís enough to show
the Hilbert symbol satisfies the relations in Symb(F). Obviously the Hil-
bert symbol is symmetric (or anti-symmetric, since it takes values in {fl}).
If a # 0, 1, then (a, l-a)F = 1 since a.12+(1-a).12  = 12. So we have only
to prove bilinearity in the first variable. If (al, b)F = 1 and (az, b)F = 1,
then by Lemma 4.4.4, al and a2 lie in the image of the norm map N :
F(&I)~ --+ FX, hence so does their product. Similarly, if (ai, b)F = 1 and
(a2,  b)F = -1 or vice versa, then one of al and a2 lies in the image of the
norm map but the other does not, so their product cannot lie in the image
of the norm map and (ala2,  b)F = -1. Finally, if (al, b)p = (a2, b)F = -1,
then b cannot be a perfect square in F, and al and a2 both represent non-
trivial elements of the quotient group FX /N(F( &) ’ ). However, by the
hypothesis on F, this quotient group has only two elements, so alo2  is
trivial in FX/N(F(&)X)  and (ala2,  b)F = 1. 0

The hypothesis of Proposition 4.4.5 appears very special, but is satisfied
in a non-trivial case of great interest, that of a local field.
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4.4.6. Theorem. Let F be a local field of characteristic # 2, that is, Iw,
C:, a finite extension of thep-adic numbers Q,, or the field Pq((t))  of formal
Laurent power series over a finite field F, (with q not a power of 2). Then
for any non-trivial quadratic extension F(G) of F, N(F(&)X)  has index
exactly 2 in Fx .

Proof. When F = Cc, there are no non-trivial quadratic extensions.
When F = Iw, there is only one, namely Cc, and N(z) = 1.~1~  for z E Cc, so
N(CX) = w:, which has index 2 in Rx. Thus we may assume F is non-
archimedean. Let R be the ring of integers in F and let p be its maximal
ideal. The finite field R/p is called the residue-class field. Any quadratic
extension F = F(d) of F is also a non-archimedean local field with its
own ring of integers R and maximal ideal ?$3. Without loss of generality
we may assume b E RX and b $ p 2. Choose generators x E R of p and
?i E l? of p. The quadratic extensions are of two types: unramified,
that is, those for which [R/q  : R/p] = 2, and ramified, those for which
[R/p  : R/p] = 1 (these are the only two possibilities since it is easy to see
that [R/p  : R/p] 5 [F : F] = 2). Note that FX ” {T?ZL  : n E Z, u E RX}
a n d  F(&)X  S (3% : n E Z, v E RX}.  Then it turns out that in the
unramified case, N(RX) = RX and N(ii)  = r2u for some u E RX, whereas
in the ramified case, N(?i) = 7ru for some u E RX and N(RX)  is of index 2
in RX. In either case, N(F(&J)~)  has index 2 in FX.

To prove this, we have to do a calculation. Since weíre assuming the
characteristic of F is not 2, the extension F(h) is separable with Galois
group G = Gal(F(&)/F)  cyclic of order 2, with generator (T : & H
-x6. First suppose F = JF,((t)) with q odd. Then equating coefficients
of power series shows that any element b = Czî=,  biti  of R with leading
coefficient bo = 1 is a perfect square, so there are only two kinds of non-
trivial quadratic extensions of F: F = P,z ((t)), corresponding to taking b
to be a constant power series b = bo Q! (lF,ì)2  (this is the unramified case),

and F = F&m)), corresponding to taking b = bit (the ramified case).
Since N : lF;2 -+ IFp”  ’1s surjective,  it is easy to compute that N(iix) = RX
and N(t) = t2 in the first case, whereas in the second case, N(m) = -bit
but RX/N(RX) ” ì;  /(F,X)2. In either case, N(FX) has index 2 in FX.

It remains to deal with the case where F is non-archimedean of char-
acteristic 0, i.e., a finite extension of the padic numbers Q, for some p.
In this case we can use the fact that the power series for the exponential
and logarithm functions converge in a small enough disk and give an iso-
morphism of groups from some small compact open subgroup U of R to a
compact open subgroup err of RX. Similarly, the exponential map gives an
isomorphism from &U+&U,  with, say, 01 = l+&, 132 = l-h, to an open
u-invariant subgroup V of RX.  View FX, Rx, and V as G-modules via
the action of (T. If we consider the maps N : 2 H XCT(Z),  a : x H XO(X)-~,
then by Exercise 4.1.25, the chain complex whose maps are alternately N
and (T gives a calculation of the G-homology, where G = { 1, a}, with H2n,
n > 0, being ker N/ im CY,  and with Hzn+l, n > 0, being ker CY/ im N. Note
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that kera consists of the fixed points for cr, which just gives the intersec-
tion with F. Also, in the case of the G-module FX, imo = kerN, i.e.,
Hzn(G, FX ) = 1, n > 0. This is the simplest case of Hilbertís ìTheorem
90î-in  this case, the proof is immediate, since obviously im o G ker N,
while if

N(z,, + x1&) = 3; - bx: = 1,

then either xc = 1 and x1 = 0, so xe + xl& = 1, or else

X0 + QJT; = (bxr + (x0 - 1) &) (bxr - (x0 - 1) &)-l

= cr @Xl + (xc - 1) &) ,

Consider the long exact homology sequences (Proposition 4.1.9) applied to
the short exact sequences of G-modules

(4.4.7) l~RX~Fx~{?iî:nEZ}~!Zll,

(4.4.8) l-V+RX+A+l,

where A is a finite abelian  group since V is open in the compact group RX.
Prom (4.4.7) we obtain for n large the exact sequence

(4.4.7í)

&(G, Z) = 1 + &_r(G, RX) --+ Hzn_I(G, FX) + H2n-1(G,  Z) 2 G

+ H2n-2(G,  RX ) -+ Iz~~~-~(G,  FX) = 1 .

Since by construction G permutes 131  and 02, Shapiroís Lemma (Corollary
4.1.12) shows that H.(G, V) 2 H.(l, U), so the higher homology vanishes.
Thus from (4.4.8) we obtain for n large the exact sequences

[ fl2n(G,  V) = 1 + Hzn(G, RX) --) fJzn(G,  A)

(4.4.8í)
+ H2n-1(G,  V) = 1,

fJ2+1(G> V) = 1 + H~~__I(G,  Rx)  + H2n-1(G,  A)

+ &n__2(G,  V) = 1.

Since A is finite, Hzn(G,  A) and Hz+r(G,  A) are finite and (non-canonical-
ly) isomorphic (this is a consequence of the fact that for an endomorphism
of a finite abelian  group, the kernel and cokernel are non-canonically iso-
morphic). So by (4.4.8í),  Hzn(G, Rx) and Hsn_r(G, RX)  are finite and
non-canonically isomorphic. Substituting in (4.4.7í),  we see that

Hsn-r(G,  FX) = ker o/ im N = FX/N(FX)

has the same order as G, namely 2. One can also see from (4.4.7í) that there
are two cases, the unramified case where Hs+r(G, FX) + Hsn_r(G,  Z) 2
G is an isomorphism and

H2+r(G,  RX) = ker crlaX / im NIRX  = RX /N(iix)  = 1,
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and the ramified case where H~+_I(G,  FX) + H~+_I(G,  Z) z G is the
O-map and

H2n--I(G,  iiî)  = keralRX/imNIRX  = RX/N(RX)

has order 2. 0

Proposition 4.4.5 and Theorem 4.4.6 can often be used to construct non-
trivial homomorphisms from K2 of a field to (51). For instance, in the
case of Q, we obtain the following.

4.4.9. Theorem. K2(Q)  is a direct limit of finite abelian  groups, and
K2(Q)  82 Z/2 is an infinite direct sum of cyclic groups of order two, one
for each prime number p. The Hilbert  symbol ( , )Q, of the p-adic numbers,
when restricted to Q, kills the summands of Kz(Q)  corresponding to primes
other than p, and maps the summand corresponding to p onto {fl}. The
Hilbert  symbol ( , ) R of the red numbers, when restricted to Q, is given
by the product formula

( , )R = n ( 7 >Qp,
p prime

The product converges in the sense that for a, b E Qî, (a, b)Qp = 1 for all
but finitely many values of p.

Proof (partially attributed by M&or to Tate [Milnor, 5111).  By Theorem
4.3.12, K2(Q)  . g1s enerated by Steinberg symbols; furthermore, by the Fun-
damental Theorem of Arithmetic, Q” is generated by -1 (of order 2) and
by the prime numbers p (linearly independent and each of infinite order).
For each positive integer m, let A, be the subgroup of Kz(Q) generated
by Steinberg symbols {u, V} with u, v E Z, 1~1, 1~1 5 m. Then A, is an
increasing sequence of groups and Kz(Q) = QA,. Note that Al is the
subgroup generated by { -1, -l}, which we know to have order exactly 2.
(It canít have order greater than 2, but it maps to an element of order 2 in
K2(W)  by Example 4.2.13.) Since any integer can be factored into primes,
A, = A,_1  if m is not prime. Also, A2 = Al since (2, -2) = 1 by
4.2.17(a) and (2, -1) = (2, 1 - 2) = 1 by 4.2.17(b). For p an odd prime,
again {p, -p} = 1 and {p, 1 - p} = 1 by Theorem 4.2.17, so that {p, p}
and {p, p - 1) coincide with {p, -l}, which has order at most 2. We claim
there is a surjective  homomorphism IF: + A,/A,_l, given by 2 H (2, p}
mod A,_1 for 2 = 1,. . . ,p- 1. This will show APIA,_-1 is finite cyclic with
order at most p - 1. Indeed, if z and y are positive integers 2 p - 1 and
xy = lcp + r, where the remainder r is a positive integer 5 p - 1, then

or by bilinearity,
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Since x, y, k, r 5 p - 1, this shows

{P, r){p, SY)-~ =  1 mod &I,

01 {XY, PI = {r, P) mod Ap-l,  and so the homomorphism is well defined.
Itís surjective since {p, p} and {p, -1) coincide with {p, p-l} = {p-l, p}.

By Proposition 4.4.5 and Theorem 4.4.6, ( , )Q, defines a homomor-
phism from Ks(Q) to {fl}. Nex we show that ( , )Q~ is non-trivial ont
A, and, for p an odd prime, also trivial on A,_l. For the case p = 2, itís
enough (by Lemma 4.4.4) to note that -1 is not a square in Qz, and also
does not lie in N(U&(fl)”  ). Indeed,

Q,” = (2” : n E Z} x {fl} x u,

where U = {u E Z,X : u E 1 mod 4) [SerreCourseArith, 51.3.21, so -1 is
not a square or a sum of two squares (i.e., a norm from Qs (&ij) in Q,”  ,
and (-1, -1)~~ = -1.

Now suppose p is an odd prime. We claim (-1, -1)~~ = +l, which will
show (-1, -l)Q, is trivial on Al = As. To see this, note that

Q,”  = {P" XEZ}XlF,X  xv,

where U = {u E Zp” : u E 1 mod p} (again see [SerreCourseArith, $1.3.21).
One can solve the equation x2 + y2 = -1 in IF,, since either -1 is a square
mod p (when p E 1 mod 4), hence is a square in U&, or else - 1 is not a
square mod p, IF*(m) = lFPz, and N : IFz2 --+ IF: is surjective. In either
event, it follows from Lemma 4.4.4 that (-1, -l)q, = 1. Furthermore,
p is not a square in Q,, and Q,( ,/@) is a ramified quadratic extension of
Qp, so that z;lAV,(Jir)x) is of order 2 by the proof of Theorem 4.4.6.
Since everything in U -+ Zg is a square, there is some positive integer
k with 1 5 k 5 p - 1 such that the image of k in lFg q Zc is not in
N(Zp(,/$)x), and (k, p)~, = -1. Thus ( , )Q, is non-trivial on A,. O n
the other hand, if k and m are positive integers relatively prime to p, we
claim that (k, m)~~ = +l. Indeed, fi m or k is a square mod p, then it is
also a square in U& and this is obvious, whereas otherwise Q,(fi)  is an
unramified quadratic extension of Qp, so that Zi /N(Zp(fi)x)  = 1 and
k E N&,(&E)  ì).  In particular, this shows ( , )Q, is trivial on A,_I.  Since
APIA,-1  is cyclic and we see now that the various ( , )Q*ës  are linearly
independent homomorphisms to {&}, it follows by induction on p that A,
is a direct sum of cyclic groups, each of even order, one for each prime
pí < p, and that we may arrange for ( , )Q;, to be trivial except on the
summand corresponding to pí. Passing to the limit, we get the desired
structure theorem for Kz(Q).

It remains to prove the product formula for ( , )w. Since ( , )R gives a
homomorphism from Kz(Q) to {fl}, it follows from the structure theorem
just proved that it must be a product of ( , )Q, ës  for various primes 1. So we
just need to check that each ( , )Q, occurs in the expansion. By bilinearity
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and skew-symmetry of Steinberg symbols, itís enough to check the formula
on (-1, -l}, on (-1, p} for p prime, and on {Q, p} for p and Q prime. We
already know (-1, p} and {p, p} coincide in Ks(Q) and that (2, 2) = 1,
so we can dispense with the generators (2, 2) and { -1, p} for p prime. We
know (-1, -1)~ = (-1, -1)~~ = -1 and (-1, -1)~~ = 1 when p is an
odd prime, so ( , )Q~ must occur in the expansion of ( , )w. Also, for any
primes p and q, we have (q, p)~ = 1. On the other hand, given any prime
1, then either p is a square in Q , in which case (q, p)~, = 1 for any q, or
else Q( 4) is a quadratic extension of Q. If this extension is unramified,
which is the case if the image of p is not a square in FL, in particular if 1
is odd and p # 1, then N(Zl(JSi)X) = Zl but 1 +! N(ZL(@)~).  So we see
t h a t  (q, P)QL  =  1 for 1 odd,  q # 1 and  P  # Z, and (q, P)Q,  =  (P,  dQ, =  -1
for p # q, q odd and p not a square mod q. If 1 = 2, then p is a square in
QzX exactly when p = 1 mod 8. If p E 3, 5, 7 mod 8, then p is a square
mod 2 but not a square in U& ë,  so U&(&I)  is a ramified extension of Q2.
In this case, for q an odd prime, q E N(Qz(@)ì)  exactly when q = 1 or
-p mod 4. The extension Qs (a) of Q 2 is also ramified, and for q an odd
prime, 47 E N(Q2(JZ)ì) exactly when q E fl mod 8. We still have to
compute (-1, p)Qp = (p, p)Qp for p odd. This is 1 exactly when -1 is a
square mod p, which happens if and only if p = 1 mod 4.

Now we can check that each ( , )Q1,  1 odd, occurs in the expansion of
( , )R.  For p an odd prime, (p, p)QL  = 1 except perhaps for Z = 2 and Z = p.
We have (p, p)Qp = -1 exactly when p E 3 mod 4, and (p, p)Q, = - 1
exactly when p z 3, 5, 7 mod 8 and p $1  or -p mod 4, i.e., when p E 3
mod 4. So since we already know ( , )Q, occurs in the expansion of ( , )a,
( , )Q, must also occur for 1 E 3 mod 4 to give the correct value on (1, 1).
Similarly, for p an odd prime, (p, 2)Q,  = 1 except perhaps for Z = 2 and
1 = p. We have (p, 2)Q, = -1 exactly when p = f3 mod 8, so since
we already know ( , )Q, occurs in the expansion of ( , )R,  ( , )Ql must
also occur for 1 E 5 mod 8 to give the correct value on (1, 2). Finally,
suppose p is a prime with p E 1 mod 8. We can show by induction on
p that ( , )Qp  must occur in the expansion of ( , )R. Suppose inductively
that ( , )QI occurs in the expansion of ( , )R for all Z < p. (To start the
induction, this is true for p = 17 since no smaller prime is = 1 mod 8.)
Since p E 1 mod 8, p is a square in Qzx, so (q, p)Q, = 1 for any prime q.
For q # p odd, (q, p)~, = 1 except perhaps for 1 = q and/or 1 = p. Also,
(q, p)Q, = -1 exactly when p is not a square mod q, and (q, p)Qp = - 1
exactly when q is not a square mod p. If there is a prime q < p for which
p is not a square mod q, then since we already know ( , )Q,  occurs in the
expansion of ( , h ( , IQ, must also occur to give the correct value on
{Q, P).

So we need to show there is a prime q < p for which p is not a quadratic
residue mod q. The following proof of this by contradiction is due to Gauss
[Gauss, Disquisitiones  Arithmeticce, $1291.  Namely, let m = [&?I. Since
p 2 17, 2m+ 1 < p. If p is a quadratic residue for all odd primes q < p, then
it is also a quadratic residue modulo all odd prime powers < p (because of


















































































































































































































































































































































